首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 46 毫秒
1.
王鹏峰  李运堂  黄永勇  朱文凯  林婕  王斌锐 《光电工程》2024,51(5):240028-1-240028-12

针对人工检测斜拉桥拉索表面缺陷效率低、安全性差,而现有目标检测方法速度慢、精度低,受拉索表面污垢干扰容易导致错检、漏检等问题,本文改进YOLOv5s网络以实现拉索表面缺陷快速准确检测。在主干网络增加TRANS模块,获取单幅图像更多特征,提高缺陷检测精度;为减少参数量、提高计算速度,将颈部网络的CSP模块替换为GhostBottleneck模块,同时利用深度可分离卷积代替普通卷积;利用SIOU损失函数减少边界框震荡,提高预测框和真实框重叠度计算结果准确性,增加模型稳定性。实验结果表明:改进YOLOv5s网络的mAP和FPS分别达到94.26%和68 f/s,优于Faster-RCNN、YOLOv4和常规YOLOv5等网络,满足斜拉桥拉索表面缺陷检测精度和实时性要求。

  相似文献   

2.
目的 将基于深度学习的YOLOv5算法应用于PCB裸板的缺陷检测上,以提高检测的准确率。方法 通过增加特征融合通路,将C2、C3、C4层直接与P2、P3、P4层相连,从而减小信息的损耗;引入更浅层的C2、F2、P2特征图以增加图像的细节信息;并且使用注意力机制SE_block,大幅提高原算法的准确率。结果 改进后的网络的平均精度由91.54%提高至97.36%,提高了5.82%,并且对于各类缺陷,算法的检测精度都能保持在90%以上,满足工业的需求。结论 文中的算法提高了检测精度,体现了浅层信息在小目标检测上的作用,验证了多信息融合通路的优势,彰显了注意力机制的优越性,相比于原算法具有一定的优势。  相似文献   

3.
为了解决航拍图像中车辆小目标检测困难的问题,提出一种改进的YOLOv5s航拍车辆检测算法。首先,将未利用的浅层特征信息与其他深层特征信息进一步融合,组成用于小目标检测的新检测层,提高小目标的检测能力;其次,结合SPD模块重新设计CSP模块构成SPD-CSP模块,代替原有网络的下采样操作,减少特征提取时小目标有效信息的损失;最后,将通道注意力机制ECA模块引入到Backbone部分中,通过自适应地调整不同特征通道的权重系数,使得网络更加关注特征图中的关键信息,减少无关信息的干扰。实验结果表明:提出的算法在VisDrone数据集上,与YOLOv5s网络相比,均值平均精度PmAP 0.5提高了6.4%,检测速度FPS达到65帧/s,能实时、精确地对航拍车辆进行检测。  相似文献   

4.
本文针对印制电路板(Printed Circuit Board, PCB)的缺陷检测问题,研究一种基于改进YOLOv5的PCB缺陷检测模型,构建常见PCB缺陷图像和背景图像的训练数据集,以及缺陷图像和无缺陷图像的测试数据集。为提高YOLOv5模型全局特征捕获能力,在CSP模块的ResNet中,融入Transformer的多头注意力机制,构建改进后的YOLOv5网络结构。结果表明:改进后的模型更适合PCB缺陷的检测,对非缺陷图像的检测精度提高了11.40%。  相似文献   

5.
目的 针对目前的瓷砖表面人工缺陷检测效率低的问题,提出一种基于深度学习YOLOv5算法实现对生产线瓷砖表面缺陷的检测。方法 首先对数据集进行切图分割与数据增强处理,再通过labelimg对数据集进行数据标注,然后将数据集送入到优化后的YOLOv5网络模型进行迭代训练,并将最优权重用于测试。结果 通过实验对比,YOLOv5模型的检测准确率高于Faster RCNN、SSD、YOLOv4这3种模型,其检测平均准确度高于96%,平均检测时间为14ms。结论 表明该方法能够检测生产过程中的瓷砖缺陷问题,在瓷砖缺陷检测上有一定的先进性和实用性。  相似文献   

6.
赖武刚  李家楠  林凡强 《包装工程》2023,44(17):189-196
目的 针对芯片封装缺陷检测过程中检测精度低与模型难部署的问题,提出YOLOv5-SPM检测网络,旨在提高检测精度并实现模型轻量化。方法 首先,通过在特征提取模块后增加通道注意力机制,提高缺陷通道的关注度,减少冗余特征的干扰,进而提升目标的检测精度。其次,在主干网络与颈部网络连接处使用快速特征金字塔结构,更好地融合了自建芯片数据集的多尺度特征信息。最后,将主干网络的特征提取模块更换为MobileNetV3,将常规卷积更换为深度卷积和点卷积,有效降低了模型尺寸和计算量。结果 经过改进后的新网络YOLOv5s-SPM在模型参数下降29.5%的情况下,平均精度较原网络提高了0.6%,准确率提高了3.2%。结论 新网络相较于传统网络在芯片缺陷检测任务中实现了模型精度与速度的统一提高,同时由于模型参数减小了29.5%,更适合部署在资源有限的工业嵌入式设备上。  相似文献   

7.
目的 针对传统的基于人工的腌制蔬菜真空缺陷包装剔除效率低、漏检率高等问题,提出一种基于改进YOLOv5s的腌制蔬菜真空包装缺陷检测方法。方法 首先,使用Ghost卷积替换CSP模块中的卷积,在提高模型特征提取能力的同时降低网络的参数量;其次,利用空间换深度(Space-to-Depth, SPD)和深度可分离卷积(Depthwise-Separable Convolution, DSConv)组合操作SPD–DSConv进行下采样,减少下采样造成的特征信息损耗;最后,在网络中引入SE注意力机制,提高算法的精确率。结果 在自制的腌制蔬菜真空包装数据集上,改进后的网络平均精度(man Average Precision, AmAP)为93.88%,模型尺寸为3.91MB,相比原网络精度提高了2.05%,模型尺寸缩减了44.38%。结论 文中方法能够实现腌制蔬菜真空缺陷包装的分类和定位,为基于机器人的缺陷包装剔除奠定了基础。  相似文献   

8.
武泽坤  叶晓娴  陈梦 《包装工程》2022,43(23):297-304
目的 在质检过程中精确快速地检测到药用空心胶囊的表面缺陷。方法 基于YOLOv5算法,针对模型网络参数量大和对长距离依赖关系的学习能力较弱的问题,提出在主干网络部分引入GhostNet模块和坐标注意力机制,使网络有效捕捉数据位置信息和通道信息的关系。结果 实验结果表明,改进的网络结构能够在参数量下降为原来的57%的前提下,对药用胶囊表面的破损、印刷错误、孔洞、划痕、凹陷等5类缺陷的平均检测精度达到96.9%,相较于YOLOv5s提高了2.4个百分点,检测速度提升了12帧/s。结论 文中方法能够有效对药用胶囊表面缺陷进行分类和定位,提高缺陷检测的准确率。  相似文献   

9.
焊接作为工业生产的重要一环,其优劣关乎最终产品质量。为了解决传统人工目视方法准确度与效率欠佳的情况,提出一种基于YOLOv5的焊缝缺陷检测算法YOLOv5-Z。YOLOv5-Z算法的改进可以分为以下几点:首先,焊缝缺陷种类丰富,为了精准检测微小焊缝,在基准网络中加入微小瑕疵检测层;其次,为了加强网络对于特征的利用效率,改善提取特征质量,在网络中Neck部位插入多头注意力;最后,构建一套工业场景焊缝及缺陷数据集,以完成焊缝缺陷的训练与测试。经过实验验证,所提YOLOv5-Z网络平均精度mAP达到98.15%,满足实际工业场景焊缝缺陷检测的需求。  相似文献   

10.
王一  龚肖杰  程佳  苏皓 《包装工程》2022,43(15):54-60
目的 针对金属工件表面小尺寸缺陷检测精度低的问题,提出以YOLOv5网络为基础,结合注意力机制与Ghost卷积的表面缺陷检测算法。方法 首先,在原网络中增加SE通道注意力模块,增加缺陷有关信息的权重,减少无用特征的干扰,从而提高目标的检测精度。然后,将网络中空间金字塔池化模块的池化方式由最大池化替换为软池化,使得在下采样激活映射中保留更多的特征信息,获得更好的检测精度。最后,采用Ghost卷积块替换主干网络中的常规卷积模块,提取丰富特征及冗余特征,以此提高模型效率。结果 改进后网络平均精度均值达到0.997 8,相比原网络提高了7.07个百分点。结论 该网络显著提高了金属工件表面缺陷检测的精度。  相似文献   

11.
曲立国  张鑫  卢自宝  刘玉玲  陈国豪 《光电工程》2024,51(6):240055-1-240055-13
交通标志检测是自动驾驶领域重要的环节,针对当前交通标志的识别存在漏检、误检、模型参数多,以及常见且复杂的代表性真实环境情况,如雾天鲁棒性差的问题,提出一种改进YOLOv5的小目标交通标志识别算法.首先对数据集进行雾化操作以适应在雾天情况下的准确识别,使用更加轻量的部分卷积(partial convolution,PConv)构建PC3特征提取模块;随后在颈部网络中提出延伸的特征金字塔(extended feature pyramid network,EFPN),为小目标添加一个小目标检测头,同时删去原始颈部网络中针对大目标的检测头,提高小目标识别准确率的同时降低网络参数;最后引入Focal-EIOU替换CIOU作为损失函数,以此来解决小目标的误检和漏检问题,嵌入CBAM注意力机制,提升网络模型的特征提取能力.改进的模型性能在TT100K数据集上得到验证,与原YOLOv5算法相比,改进模型在精确率(P)、mAP0.5上分别提高了8.9%、4.4%,参数量降低了44.4%,在NVIDIA 3080设备上FPS值为151.5,可满足真实场景中交通标志的实时检测.  相似文献   

12.
         下载免费PDF全文
In response to the problems of traditional defect detection algorithms, such as poor accuracy and feature loss in practical applications due to the inconspicuous characteristics of welding defects and complex background information, this paper proposes a welding surface defect detection algorithm based on the improved YOLOv8 (GD-YOLO). The model first introduces the fusion of feature extraction modules and convolutional modules to enhance its information extraction capabilities. Then, a slim-neck structure is embedded in the neck network, and the upsampling operator CAFARE is referenced in the feature fusion stage to assist in enhancing the model's performance. Subsequently, the attention mechanism module is improved to optimize the overall performance without significantly increasing the computational burden. Finally, the loss function is changed to Inner-SIOU to address the problem of mismatched bounding boxes. Experimental results show that the mAP0.5 detection metric of the model in this paper is 7.8% higher than that of the baseline model, and the number of parameters and the amount of computation are reduced by 0.2 M and 0.7 G, respectively.  相似文献   

13.
彭自然  王思远  肖伸平 《光电工程》2024,51(11):240220-1-240220-14

针对太阳能电池片缺陷检测中存在检测精度低、误检和漏检率高的问题,本文在深度学习模型YOLOv8的基础上进行优化与改进,提出了一种太阳能电池片电致成像(electroluminescent, EL)缺陷检测模型。首先,采用自校准光照学习(self-calibrated illumination, SCI)方法对低光照图像进行预处理,以增强太阳能电池片缺陷的有效特征信息。然后,引入一个空间到深度的注意力模块(space-to-depth, SPD),替换主干网络的第二个跨步卷积层,避免跨步卷积导致的信息丢失,扩大感受野,减少计算量,从而在特征提取时保留更多特征信息。其次,构建了空间双向要素金字塔网络(spatial-BiFPN, S-BFPN),通过多尺度特征融合,解决因太阳能电池片缺陷形状多样性而造成缺陷识别率不稳定的问题。最后,本文改进了损失函数,使用MPDIoU作为损失函数,解决了原有的CIoU损失函数中惩罚项失效的问题。实验结果显示,改进后的YOLOv8模型的mAP达到了96.9%,比原始YOLOv8提升了2.2%,计算量减少了0.2 GFlops,检测速度最高达155 f/s,实现了高精度与高实时性,更适合工业部署。

  相似文献   

14.
         下载免费PDF全文
The low detection rate of tiny defects on the surface of metal pipe fittings is a key issue confronting industrial component inspection. In aiming at this problem, an improved YOLOv9-MM model was constructed to improve the accuracy of small target detection. A real-time image acquisition system for precision metal pipe fittings was designed. By using an annular light source combined with a telecentric lens, the surface of pipe fittings can be snapped by the CCD camera and covered at all angles to eliminate the problem of missing areas. The feature map extracted methods of shallow network were introduced, and the upper sampling module of Dysample was combined to realize the dynamic fusion of depth features. By improving the loss function, the precision of small target detection is greatly improved. The results show that the proposed method has an average detection accuracy of 70.2% and a detection speed of 90 f/s. The proposed method shows some feasibility in the actual application.  相似文献   

15.
董豪  李少波  杨静  王军 《包装工程》2022,43(7):254-261
目的 为提升质检过程中药用空心胶囊的表面缺陷检测精度及其自动化水平。方法 通过设计高质量图像采集方案来避免胶囊表面出现光斑,以此构建药用空心胶囊缺陷数据集。基于YOLOv4算法,建立深度学习检测模型,利用多尺度特征提取以及训练策略,增强对小目标缺陷检测的鲁棒性。采用K-means++聚类算法更新锚框初始值,以提高模型对胶囊表面缺陷的预测性能。结果 实验结果表明,提出的胶囊缺陷检测方法能够准确判别胶囊好坏,并能检测出其表面的凹陷、孔洞、划痕、污点和接口缺损等5类缺陷,其中对于胶囊有无缺陷的平均精确均值达99.05%,各缺陷类型的平均精确率为91.81%,而每秒检测图像可达22张。与其他典型的目标检测方法相比,文中方法在检测速度和精度上都有一定优势。结论 文中所提出的基于YOLOv4的缺陷检测方法实现了对药用空心胶囊多类型缺陷的分类与定位,具有较好的检测效果和稳定性,在满足生产质量管控要求的同时,可大幅降低人工成本。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号