首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
为了探究表面织构对动压轴承热流体润滑特性的影响,计入热流体耦合因素更接近轴承的实际工况。以矩形、三角形、圆形三种表面织构形式动压轴承为研究对象,联立Reynolds方程、能量方程、黏温方程和不同形式织构几何特征方程,建立织构化轴承热流体耦合模型。采用有限差分法求解得到油膜压力场分布、温度场分布及轴承特性参数,并分析织构形状、深度、进油温度等因素对织构化轴承特性的影响。结果表明:表面织构能够有效降低油膜温升,改善轴承润滑性能;不同形式织构对于轴承热流体特性影响有所差异,低偏心时矩形织构表现出更好的润滑性能;进油温度对于织构化轴承热流体特性有较大影响,随着进油温度的升高,轴承的特性参数在不断下降,但幅度逐渐减缓。制备了织构化轴承试件并进行工况测试,试验结果与理论计算对比分析,趋势规律一致,验证了结论的合理性、正确性。  相似文献   

2.
目的 研究局部凹坑织构对无限长可倾瓦推力轴承的流体动压润滑性能的影响.方法 基于质量守恒空化边界条件的雷诺方程,建立了局部凹坑织构无限长可倾瓦推力轴承动压润滑二维理论模型.采用多重网格法求解雷诺方程,模拟局部凹坑织构无限长可倾瓦推力轴承的流体动压分布,分析局部织构比、位置比、深度、水平间距及数量对流体动压润滑性能的影响...  相似文献   

3.
纪敬虎  周莹超  田朋霖  陈天阳  何玉洋 《表面技术》2021,50(10):214-220, 278
目的 探究局部凹坑织构化表面对径向滑动轴承流体动力润滑的影响.方法 基于雷诺边界条件和Reynolds方程,建立凹坑织构化径向滑动轴承表面流体动力润滑理论模型,采用Gauss-Seidel松弛迭代方法数值求解,获得润滑油膜的压力分布和承载能力,分析其润滑油膜承载机制,探讨凹坑几何参数和分布规律对油膜承载力的影响规律.结果 理论模型的数值解与经典理论的数值解误差较小,能有效分析轴承的流体动压润滑特性.当偏心率较大时,摩擦力的上升幅度也变大,在轴承承载区进行凹坑织构化处理能明显减小摩擦力,并且随着凹坑深度的增大,摩擦力减小,可见凹坑起润滑减摩的作用.油膜承载力随着偏心率的增大而增大,通过凹坑织构的"楔形效应"能够改善非承载区的油膜压力,存在最佳凹坑深度使得轴承达到流体动力润滑最佳状态.摩擦力随着面积率的增大而增大,特别是在偏心率较大时,润滑减摩效果较为明显,面积率对油膜承载力影响不大.将织构布置在径向滑动轴承的不同区域,其中当织构完全在下半瓦(压降区)时,织构能明显增大油膜厚度,产生油膜压力,有效降低摩擦力,提升承载力.结论 凹坑织构能明显改善径向滑动轴承流体动力润滑性能,合理设计轴承的偏心率,合适的织构参数与分布位置,能使流体动力润滑效果最佳.  相似文献   

4.
目的 提出一种表面凸貌微织构的快速制造方法,并对其表面动压润滑性能及减摩机制进行研究。方法 利用高低压复合放电沉积加工技术实现气体介质中金属或半导体材料表面凸貌微织构的制备。高压脉冲电压实现两极间介质的电离度,低压直流放电实现电极材料蚀除,并沉积在工件表现形成微织构。通过控制工具电极直径,可获得直径410 μm、高12 μm尺度的凸貌微织构。利用FLUENT软件,对该方法所获的凸貌微织构表面动压润滑性能进行仿真,研究了不同高度、直径、面积比下,表面微织构对润滑性能的影响规律。结果 织构面积比和动压润滑性能成正比关系:随着面积比增大,织构上表面平均压力增大。油膜上表面平均压力在高度为7 μm、直径为500 μm、面积比为60%、对摩速度0.5 m/s时,达到最大值1.21×104 Pa。动压润滑性能随单个凸貌微织构高度的增加,先增大后减小,并在7 μm时达到最大。织构直径对润滑性能影响明显,仿真结果表明,在一定条件下,加大织构直径可提高油膜上表面平均压力。结论 凸貌微织构采用增材制造方法,减小了传统去除材料的织构制造方法导致的对材料强度的影响。该方法工艺简单,成本低,不需辅助其他加工条件。表面凸貌微织构的存在使两接触表面的间距减小,形成收敛楔,从而形成动压,使润滑膜产生动压承载力,改善了摩擦学性能。对凸貌微织构的结构参数(面积比、微织构高度、直径)进行仿真分析,获得了织构结构参数对动压润滑特性的影响规律,为后续研究提供了理论支持。  相似文献   

5.
为了探究表面织构对动压滑动轴承摩擦学性能的影响,基于自研的摩擦磨损试验机对 BY-BDB 型三维光纤激光织构机加工的表面织构动压滑动轴承摩擦学性能影响进行研究。 通过三维形貌仪、扫描电子显微镜( SEM)以及能谱仪(EDS)对摩擦磨损试验后的微观形貌和摩擦磨损状况进行分析。 研究表明:激光加工会引起表层出现硬化现象且 C 与 O 元素的含量分别增加了 31. 1%与 7. 9%;不同织构参数(面积率 Sp 与深径比 β)与工况(载荷与转速)下的磨损量与摩擦因数呈现先减小后增加的趋势且表面织构对动压滑动轴承的耐摩性能提高了 23%以上。 此外,研究还发现动压滑动轴承摩擦磨损机理是磨粒切削与粘着磨损,而表面织构的减摩机理是能够提高表面耐磨性以及储存磨粒和形成二次动压润滑。  相似文献   

6.
目的 研究非对称性阶梯槽织构对水润滑止推轴承静态特性的影响。方法 首先建立考虑表面织构、紊流以及JFO空化模型的Reynolds方程,再采用有限差分法求解方程,得到织构化轴承的压力分布以及剪应力;然后对压力以及剪应力沿轴承表面积分,求得轴承的承载力及摩擦力;最后研究不同转速以及结构参数下阶梯槽织构对水润滑止推轴承承载力及摩擦力的影响规律。结果 若阶梯槽织构为前槽深、后槽浅,且当前、后槽槽宽相等时,承载力存在最大值;对于前槽浅、后槽深的织构,当前、后槽槽宽相等时,承载力最小。当前槽槽深小于水膜间隙,后槽槽深约为0.67倍的前槽槽深时,轴承承载力最大;当前槽槽深大于水膜间隙,后槽槽深约为0.33倍的前槽槽深时,轴承承载力最大。当前槽槽深不大于水膜间隙(15 μm)时,存在使摩擦力最小的最佳槽深比;当前槽槽深大于15 μm时,随着前后槽深比从0.33增大至1.68,轴承摩擦力逐渐减小。结论 阶梯槽织构起到了减小水润滑止推轴承摩擦力的效果。将阶梯槽设计为沿水流方向前槽深、后槽浅,且前、后槽槽宽相等,可以得到较大的承载力。合适的阶梯槽表面织构参数能够实现大承载、低摩擦。  相似文献   

7.
目的 提高水润滑条件下SiC陶瓷的摩擦性能。方法 通过对剪切力矩和摩擦因数的测试和计算,结合扫描电镜(SEM)和能谱仪(EDS)观察试件表面的磨痕形貌及元素含量分布,分析转速、载荷和织构排布方式对变深度水滴型织构在SiC表面摩擦因数、磨损特征和摩擦化学反应的影响规律。结果 在变深度动压弹流润滑和摩擦化学反应的协同作用下,单侧水滴型织构试件在润滑介质从小端流向大端时可以实现更好的润滑性能,并且随着转速从200 r/min升至900 r/min,稳定摩擦因数从0.004增至0.068,远低于相同工况下斜槽型织构和无织构的光滑表面试件。对于水滴型织构,当润滑介质从大端流向小端时,其呈现的摩擦因数与无织构表面光滑试件的摩擦因数相近,维持在0.014~0.114。双侧水滴型织构在重载时具有更优异的润滑减摩效果,在200~900 r/min的转速范围内,能够提供稳定且较小的摩擦因数。结论 在SiC材料表面设计具有变深度特征的水滴型织构,可以有效提高系统的润滑减摩效果,特别是当润滑介质从织构较浅处流向较深处时,可以促进SiC试件表面的摩擦化学反应,生成的氧化物薄膜会覆盖在试件表面形成保护层,使SiC陶瓷的摩擦学行为得到改善。  相似文献   

8.
目的 建立具有非对称表面织构的粗糙平面的表征方程,并分析方程参数对其形貌的影响,依托表征方程重建的织构平面研究非对称表面织构在动压润滑条件下的润滑特性.方法 根据非对称织构平面的加工过程,基于W-M函数重构粗糙表面,再叠加非对称织构形貌特征方程,实现不同尺寸非对称表面织构的数学表征,利用Matlab软件对方程中表面织构...  相似文献   

9.
为了提高油膜承载力、改善润滑效果、优化织构化表面的摩擦学性能,研究不同黏度润滑油下网状织构的润滑性能。设计4种不同凹槽宽度的网状织构,通过测量接触角、油膜承载力以及摩擦因数,得到不同转速、不同黏度润滑油下4种网状织构的油膜承载力以及摩擦因数的变化规律。实验结果表明:在4种织构中,凹槽宽度为0.4 mm的网状织构润滑性能最好,在设定的实验条件下,最大油膜承载力为0.52 N,最小摩擦因数为0.019。此外,接触角测量实验表明凹槽宽度为0.4 mm的网状织构表面疏水性能更好,有比较好的成膜能力,使得织构表面动压承载力有比较大提升,摩擦因数也更小。比较不同黏度润滑油和不同转速下网状织构润滑性能,黏度越大的润滑油,油膜承载力越大,润滑效果更佳。同时,油膜承载力随着转速的增大而增大,在润滑油黏度较高时这种影响更为显著。  相似文献   

10.
针对机械密封的润滑和泄漏特性,研究发现,同时改善两特性的表面织构往往伴有较复杂的设计准则,而形式相对简单的织构设计在改善润滑性能的同时,往往导致泄漏增加。对互相矛盾的多个性能指标进行协调优化是表面织构技术在机械密封领域面临的挑战。优化算法是一种客观获得问题最优解的有效手段。鉴于此,介绍了基于单目标优化算法的表面织构形状优化研究现状,总结了基于多目标优化算法的机械密封润滑特性和泄漏特性协调优化研究的主要进展,并聚焦于同时以承载力和泄漏率为指标的螺旋槽参数和自由织构形状优化,最后分析了协调优化研究中存在的不足,并展望了其发展方向,以期进一步推进表面织构技术在密封领域的应用。  相似文献   

11.
杯形件温挤成形凸模润滑方式的研究   总被引:1,自引:0,他引:1  
王嘉 《锻压技术》2003,28(3):65-67
针对杯形件温挤生产中挤压凸模寿命过低这一问题,从分析导致该问题的主要因素入手,对现行工艺中挤压凸模的润滑方式进行了改进,并对改进方式进行了计算机模拟分析和实验验证。结果表明:采用改进润滑方式后,挤压力约降低30%,挤压凸模的温升下降15%左右,从而有效地改善了凸模的工作条件,实现挤压凸模寿命的提高。  相似文献   

12.
针对浮环轴承贫油润滑问题,基于雷诺方程,建立浮环轴承贫油润滑模型,以润滑油入口供油量为可变参数,通过有限差分法求解数学模型,分析了供油量对浮环轴承内外油膜力静态润滑特性影响,计算结果表明:供油量明显影响润滑油油膜力的起始角和轴承环速比,摩擦功耗随浮环轴承供油量的减小而增大。  相似文献   

13.
基于广义Reynolds方程,建立圆柱滑动轴承贫油润滑模型,分析了入口油膜厚度对滑动轴承贫油润滑性能的影响。数值计算结果表明:在载荷和转速不变时,供油条件明显影响油膜收敛区的油膜厚度、承载力等参数;随入口油膜厚度的增加,滑动轴承承载区油膜厚度、端泄流量、有效承载面积增加,而轴承偏心率和油膜起始角随供油量的增加而减小。  相似文献   

14.
铸机投产初期,弯曲段辊系经常发生辊子不转、辊面磨损、轴承损坏现象,为确保板坯质量只能频繁更换弯曲段,致使弯曲段备件出现周转困难严重影响板坯铸机的正常生产。专业技术人员从设备结构、辊子装配、轴承类型、润滑等方面调研分析、查找影响设备寿命的各项因素,最终使弯曲段设备的技术状况得到了根本改善,将弯曲段一次过钢量由设计的15万t提高到35万t以上。  相似文献   

15.
徐泽儒  韩彩凤  李军富  谢鹏 《轧钢》2002,19(1):54-55
为了解决在轧钢恶劣工况条件下辊道轴承采用铜瓦及滚动轴承等的弊端 ,改用铁基铬钨硫化物固体润滑复合材料轴承 ,在同等条件下 ,使用寿命提高 10倍以上。  相似文献   

16.
普通的油雾、喷油等润滑方式已不能适应现代轧机的需要。油气润滑技术因其具有无污染、耗油量低、设备运行成本低等优点得到迅速推广应用。  相似文献   

17.
杨付春 《连铸》2020,45(3):81-82
连铸机出坯辊道维护难度大,主要是润滑不好。其原因为:数量多、温度高和水冷条件差。对连铸机出坯辊子轴承润滑问题进行了探讨,为钢厂的技术改造提供了参考。  相似文献   

18.
蒋博文  张振华  王飞  延皓 《机床与液压》2022,50(23):124-127
针对大负载伺服系统低速工况出现振动的现象,讨论伺服阀小开口时流量特性的非线性特征。基于流态变化的过渡假设,提出一种分段线性流量系数模型,描述伺服阀节流口逐渐打开过程中,流量系数随流态和雷诺数的变化规律。试验结果表明:该模型能够较准确地描述伺服阀小开口时的流量特性,从而为流量增益波动的发生机制提供了一种理论解释,也初步确定了从层流开始向湍流过渡的临界雷诺数为55,为更为精准的阀控系统非线性建模和改善其控制品质建立了基础。  相似文献   

19.
目的 提高以水作为润滑介质的织构型非金属推力轴承的润滑性能,为水润滑推力轴承的优化设计提供参考.方法 基于计算流体力学方法建立织构型水润滑推力轴承的流体动压润滑模型,采用双向流固耦合方法计算润滑流场与材料变形之间的相互作用.随后,以承载力最高和摩擦力最低为目标,采用响应曲面与非支配排序遗传算法相结合的多目标协同优化方法,对4种非金属材料的织构型推力轴承进行优化.结果 随着轴承材料弹性模量的降低,轴承内最高压力值逐渐降低,最大变形逐渐增加,且最优织构覆盖率值逐渐减小.当织构覆盖率为20%时,轴承材料对最优织构深度值无明显影响;当织构覆盖率增至40%及以上时,随着轴承材料弹性模量的降低,最优织构深度值逐渐增加.在同一轴承材料下,最优织构参数之间相互影响,随着织构覆盖率的增加,最优织构深度值逐渐增大.对于碳化硅陶瓷和尼龙等弹性模量较大的轴承材料,优化后,轴承内流体最高压力明显提升;对于超高分子量聚乙烯和赛龙等弹性模量较小的轴承材料,优化后,高压区面积明显增大.结论 轴承材料对轴承润滑性能及最优织构参数均有明显影响,且最优织构参数间相互影响.经过对织构型水润滑推力轴承的多目标协同优化,轴承润滑性能明显改善.  相似文献   

20.
为了验证某推力轴承设计的合理性,以某推力轴承为研究对象,依据给定的供油工作条件,使用CFD技术分析了推力轴承正常工作情况下的动压油膜轴向承载力特性。研究结果表明:在正常工作情况下,推力块瓦面倾角为0.02°,推力块动压油膜承载力大于1210 kN,满足瓦块轴向承载力要求;推力环进口边界压力为0.2 MPa时,油膜承载力约为69 kN,同时满足了推力盘润滑要求和转子旋转时的油膜承载力要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号