首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The effective notch stress method (ENS) as defined by the International Institute of Welding is widely used by design engineers to assess the fatigue strength of welded components. This paper provides a comprehensive evaluation of published data for welded joints improved by high frequency mechanical impact (HFMI) treatment. The goal is to verify already-known fatigue classes for the ENS with the available axially-loaded fatigue data. In total, 280 experimental test results obtained from longitudinal, cruciform and butt welds subject to stress ratio of R = 0.1 axial loading are evaluated. Notch stress concentration factors (Kn) for each joint geometry are analysed based on the finite element method. Calculated Kn and reported nominal stress values are used to determine local stresses. Fatigue strength assessment of the all available data is performed by the previously-proposed and verified correction procedure for yield strength (fy). A formerly-defined minimum Kn values as a function of fy is used for butt welds. The already-known fatigue classes are found to be conservative with respect to available fatigue test data.  相似文献   

2.
The existence of crack-like flaws cannot be excluded in pressure vessels and piping due to the presence of non-metallic inclusions and surface imperfections. These inhomogeneities reduce the fatigue strength of the pressure vessel. In this work, the detrimental effect of the surface quality on the fatigue strength of cylinder housings is analyzed by means of a fatigue model available in the literature using values obtained by crack propagation tests. The comparison in terms of fatigue limit between model and experimental full scale (FS) tests has shown an underestimation of the fatigue strength if the prediction based on ΔKth,LC values for long cracks is used. This is due to a flattening effect of the ΔKth,LC values at high stress ratios R under full scale tests that the standard crack propagation tests do not anticipate. Further investigations need to be carried out for more realistic prediction by the mentioned model. In order to obtain an accurate and more realistic fatigue limit, an alternative small scale (SS) fatigue test has been implemented. The goal was to reproduce as much as possible the real condition of a full scale (FS) state during the small scale (SS) fatigue limit test; and this has led to a good agreement between the FS and SS fatigue limit tests.  相似文献   

3.
This paper analyzes low-cycle fatigue life under strain control (εaNf curve) of NiTi wires in bending-rotation tests. These were carried out on stable austenite, superelastic, and stable martensite wires, with strain amplitudes from 0.6% to 12%. For strain amplitudes up to 4%, εaNf curves of superelastic wires are close to those values reported in the literature, and close to that of the stable austenite wire. For higher strain amplitudes, the fatigue life of superelastic wires increases with strain and approaches the fatigue life of stable martensite wire. This unusual behavior causes a “Z-shaped” curve. Fatigue crack characteristics were studied by scanning electron microscopy. Simple finite element models of the test were also developed. The results suggest that the abnormal shape of the superelastic wire curve is associated to the changes in fatigue properties that occurs when the superelastic material transform to martensite.  相似文献   

4.
The fatigue crack path has been studied on a tensile specimen with holes. The experimental crack path trajectories were compared with those calculated numerically. To incorporate the influence of constraint on the crack curving, we predicted the fatigue crack path by using the two-parameter modification of the maximum tensile stress (MTS) criterion. The values of the mixed-mode stress intensity factors KI, and KII as well as the corresponding constraint level characterized by T-stress were calculated for the obtained curvilinear and reference crack path trajectories. It is shown that in the studied configuration the effect of T-stress on the crack path is not significant. On the other hand the effect of constraint on the fatigue crack propagation rate is more pronounced.  相似文献   

5.
The microscopic behaviour of surface deformation in the precracked fatigue stage of AISI 310 stainless steel was examined. The fatigue experiments were conducted in a special servohydraulic miniature testing machine (BAERBEL) inside a scanning electron microscope. The object of the present study was the quantitative determination of material damage caused by fatigue straining. The roughness values, Ra, were determined by using both a stereo-photogrammetrical method and a contact stylus instrument. Both morphometrical methods allowed the deformation of fatigued surfaces to be quantified. It has proved possible to indicate the existence of a propagating crack by determining the maximum of the function of the roughness value, Ra, versus loading.  相似文献   

6.
Closed form expressions for the low cycle and high cycle fatigue crack growth lives have been derived for the randomly-planar oriented short-fiber reinforced metal matrix composites under the total strain-controlled conditions. The modeling was based on fatigue-fracture mechanics theory under both the small scale and the large scale yielding conditions. The modified shear lag theory was considered to describe the effect of yielding strength. The present model is essentially a crack growth model because crack initiation period in short fiber reinforced metal matrix composite is much shorter; hence, not assumed to play a dominant role in the calculation of fatigue crack growth life. The effects of short-fiber volume fraction (Vf), cyclic strain hardening exponent (n′) and cyclic strain hardening coefficient (K′) on the fatigue crack propagation life are analyzed for aluminum based SFMMCs at different levels of cyclic plastic strain values. It is observed that the influence of fatigue crack growth resistance increases with increase in cyclic strain hardening exponent (n′) and decreases when volume fraction (Vf) or cyclic strain hardening coefficient (K′) increases. The present MSL theory based fatigue crack growth life prediction model is an alternative of modified rule of mixture and strengthening factor models. The predicted fatigue life for SFMMC shows good agreement with the experimental data for the low cycle and high cycle fatigue applications.  相似文献   

7.
The goal of this investigation was to study the effect of local geometrical variations of the weld on the fatigue strength. Therefore the fatigue behaviour of non-load-carrying cruciform fillet welded joint under tensile loading has been studied parametrically. Several two-dimensional (2D) finite element models of the joint were analysed using plane strain linear elastic fracture mechanics (LEFM) calculations in order to get the magnification function Mk. A maximum tangential stress criterion was used to predict the crack growth direction under mixed mode KI-KII conditions. The derived Mk solution was then applied both for continuous weld toe cracks and also for semi-elliptical toe cracks at the deepest point of the crack front. An experimental crack aspect ratio development curve was used for propagating semi-elliptical cracks. The as-welded condition was assumed with the result that no crack initiation period was considered and stress ranges were fully effective. The Paris crack growth law was used to predict the growth rate. The effects of weld toe radius, flank angle and weld size on the fatigue strength were systematically studied. Finally, predicted fatigue strength values corresponding to different assumed crack sizes were compared with the available test results.  相似文献   

8.
《Composite Structures》2012,94(1):290-298
Compression–compression fatigue test study of a fire resistant Eco-Core was conducted at two values of stress ratios (R = 10 and 5). Tests were conducted at Smin/So values of 0.9–0.6 for R = 10 and 0.95–0.8 for R = 5. Here Smin is the maximum compression stress and So is the compression strength. The study showed that Eco-Core has well defined failure modes and associated fatigue lives. The failure modes are: damage on-set; damage progression, and final failure. The damage on-set, propagation and final failure were characterized by 2%, 5% and 7% changes in compliance. The three failure modes were found to be same for both static and fatigue loadings. The endurance limit was found to be 0.72So, 0.75So and 0.76So, respectively for three failure modes for R = 10 and 0.81So, 0.82So and 0.82So, respectively for R = 5. The fatigue life is defined by a power law equation, Smin/So = AoNα. Constants of the equation were established for all three modes of failures and the two stress ratios. Finally, fatigue life was found to be less sensitive to R ratio when expressed in terms of stress range versus number of load cycles, which is similar to that of metallic materials.  相似文献   

9.
Typically, fatigue crack propagation in railway wheels is initiated at some subsurface defect and occurs under mixed mode (I–II) conditions. For a Spanish AVE train wheel, fatigue crack growth characterization of the steel in mode I, mixed mode I–II, and evaluation of crack path starting from an assumed flaw are presented and discussed.Mode I fatigue crack growth rate measurement were performed in compact tension C(T) specimens according to the ASTM E647 standard. Three different load ratios were used, and fatigue crack growth thresholds were determined according to two different procedures. Load shedding and constant maximum stress intensity factor with increasing load ratio R were used for evaluation of fatigue crack growth threshold.To model a crack growth scenario in a railway wheel, mixed mode I–II fatigue crack growth tests were performed using CTS specimens. Fatigue crack growth rates and propagation direction of a crack subjected to mixed mode loading were measured. A finite element analysis was performed in order to obtain the KI and KII values for the tested loading angles. The crack propagation direction for the tested mixed mode loading conditions was experimentally measured and numerically calculated, and the obtained results were then compared in order to validate the used numerical techniques.The modelled crack growth, up to final fracture in the wheel, is consistent with the expectation for the type of initial damage considered.  相似文献   

10.
Evolution of parameters of fracture mechanics at various stages of low-cycle damage is studied. The developed approach is based on elaboration of optical interference measurements of the deformation response to a small crack length increment. Three sequential symmetrical notches simulate the fatigue crack growth process across the cumulative fatigue damage zone caused by low-cycle fatigue. The values of tangential components of displacement that are measured at several points on cut edges by electronic speckle interferometry are initial experimental information. The coefficients of stress intensity (SIC) and T strains are determined on the basis of the Williams solution. Values of opening and coefficients of stress intensity (SIC) and T strains for cracks of different length with fixed values of preloading cycles Nc equal 0, 100, 1000, 1800, 2500, and 3300 are obtained. The dependences of the parameters of fracture mechanics for cracks of the fixed length on Nc are constructed.  相似文献   

11.
Duplex stainless steels (DSS) fatigue crack propagation resistance is strongly affected by both microstructure and environment. In this work, environment influence on the fatigue crack propagation in a 22 Cr 5 Ni duplex and in a 25 Cr 7 Ni superduplex stainless steels is investigated considering three different stress ratios (R = Kmin/Kmax = 0.1, 0.5, 0.75). Tests are performed according to ASTM E 647 standard, both in air and under hydrogen charging conditions (0.1 M H2SO4 + 0.01 M KSCN aqueous solution, ?0.9 V/SCE). Crack fracture surfaces are extensively analysed by means of a scanning electron microscope. Furthermore, crack paths are investigated by means of a crack profile analysis performed through a light optical microscope. Nickel coated fracture surface sections obtained for constant ΔK values are considered in order to analyse the loading (R values) and environment influence on fatigue crack paths.  相似文献   

12.
The variability of resilient modulus (M R) of unbound materials and subgrade due to laboratory test conditions affect pavement performance and designs. The performance-based mechanistic-empirical pavement design guide (MEPDG) is gaining more popularity in recent years for pavement design use. However, limited research efforts have quantitatively studied M R effects based on ME models. This research targets to evaluate the influences of M R variability on pavement performance and designs based on the MEPDG performance models. With a normal-distribution of M R seed values, pavement responses were computed with a layer-elastic analysis model, pavement performance was then predicted using MEPDG models, and design variability was studied via Monte Carlo simulation. Results indicate that the relationship between layer design thickness and M R varies from almost linear to nonlinear, which is highly dependent on the pavement structure and material properties. For the evaluated specific pavement structure and range of M R values, the least susceptible is the HMA design thickness as a function of M R under fatigue with a design Coefficient of Variance (CV) of 7.51 %, while the most susceptible is the base design thickness as a function of M R also under fatigue with a CV of 54.32 %. The combined effect of both rut depth and fatigue life considering the variability of both base and subgrade results in a design CV of 22.58 % for asphalt layer and 26.08 % for base layer. When using a weaker base layer or a thinner HMA layer, the modeled thickness design CV has changed ?4.19 to 1.14 %.  相似文献   

13.
The influence of hot corrosion on low cycle fatigue behavior is studied by conducting fatigue tests at 800 °C in air on bare and salt-coated (90%Na2SO4 + 10%NaCl) specimens. This was followed by extensive scanning electron microscopic (SEM) examinations. Significant reduction in fatigue life is observed across all values of Δεt/2 for the salt-coated specimens in comparison with bare specimens. SEM examination reveals that the fused salt mixture sporadically removes the protective chromium oxide layer and exposes the substrate. Subsequent SEM analysis reveals that severe grain boundary oxidation leads to grain boundary cracking and provides numerous sites for fatigue crack nucleation and growth.  相似文献   

14.
This study compares traditional stiffness and energy based fatigue failure criteria with the fatigue failure criterion based on the viscoelastic continuum damage (VECD) approach. In traditional approach, fatigue failure is defined as the number of cycles at which the stiffness of a material reduces by 50% (Nf50). In energy based approach, fatigue failure is defined by the number of cycles at the maximum energy ratio or Rowe’s maximum stiffness defined by stiffness multiplied by the corresponding number of the cycle (E * N). In VECD approach, fatigue failure is defined by the number of loading cycles at the inflection point of the normalized pseudostiffness (C) versus damage variable (S) curve. It is shown that a correlation exits between traditional criteria and VECD criteria. It is shown that maximum energy ratio or Rowe’s maximum stiffness based fatigue life is higher than the traditional fatigue life (Nf50). This indicates the traditional approach is conservative. A strong correlation of fatigue was observed between the VECD fatigue criterion and energy ratio based fatigue criteria. However, the fatigue life by VECD approach is always less than the fatigue life by energy ratio or Rowe’s maximum stiffness.  相似文献   

15.
This work presents the experimental results of fatigue crack growth resistance of ultrafine-grained (UFG) copper. The UFG copper has a commercial purity level (99.90%) and an average grain size of 300 nm obtained by a 8-passes route Bc ECAP process. The fatigue propagation tests are conducted in air, at load ratios R = Kmin/Kmax varying from 0.1 to 0.7, on small Disk Shaped CT specimens. Both stage I and stage II regime of growth rate are explored. Results are partially in contrast with the few experimental data available in the technical literature, that are by the way about high purity UFG copper. In fact, the present material shows a relatively high fatigue crack resistance with respect to the unprocessed coarse-grained alloy, especially at high values of applied stress intensity factor ΔK. At higher R-ratio a smaller threshold intensity factor is found, together with a lower stage II fatigue crack growth rate. The explanation of such crack growth retardation is based on a diffuse branching mechanism observed especially at higher average ΔK.  相似文献   

16.
In this study, fatigue tests were carried out on both diecast and extruded Mg alloys to study their distributions of fatigue lives under constant stress amplitudes. During the fatigue process of the diecast Mg alloy, cracks initiated from the casting defects inside of the specimen, and then propagated prior to final failure of the specimen. While in the extruded Mg alloy, cracks initiated from the inclusions located on the specimen surface. With assuming the above defects as the initial cracks, the initial maximum stress intensity factors Kimax were evaluated. There are common relations between the initial maximum stress intensity factors Kimax and fatigue lives Nf, regardless of the stress amplitudes for the both Mg alloys at the constant R ratio of −1. The lower Kimax, the longer Nf becomes. Integrating the fatigue crack propagation law from the initial maximum stress intensity factor Kimax to the fatigue fracture toughness Kfc, the relations Kimax vs. Nf can be successfully evaluated.Distributions of fatigue lives at the constant stress amplitudes can be represented by the Weibull distributions. Dispersion in the fatigue lives becomes larger at the lower stress amplitude as compared with those at the higher stress amplitudes. This trend is observed commonly for both diecast and extruded Mg alloys.  相似文献   

17.
The relationship between the fatigue limit stress range, Δσw, the threshold stress intensity factor, ΔKth, and microstructure of low-carbon 12CrNi3A steel has been investigated. Non-propagating microcracks were observed on the surface of smooth specimens which has been subjected to at least 5 × 106 cycles at the fatigue limit stress. The size of the cracks depended on the characteristic sizes of the microstructure of the material. Scanning electron microscopy showed that the fractographic characteristics in the near-threshold region of fatigue macrocrack growth were similar to those in the fatigue microcrack initiation region. This implies that the fatigue limit and fatigue threshold of the material have a similar physical meaning, both signifying the resistance of the material to the propagation of fatigue cracks. The relationship ΔKth = 1.12ΔσW √πα was shown to be valid, where a is a material parameter relating to microstructure, rather than to the length of a macrocrack. The results also showed that the value of a depends on the material and microstructure, and that both ΔσW and ΔKth will change if the microstructural characteristics of the material change.  相似文献   

18.
The fracture behavior of the Cu/Si interface in a nano-cantilever specimen with a 200 nm-thick Cu film (Specimen-200), which possesses a nanometer-scale strain-concentrated region, is examined under a cyclic bending load. The fatigue strength is around GPa level owing to the high yield stress of the Cu nano-film and the deformation constraint associated with the neighboring hard materials. The S-N curve shows clear dependence of fatigue life on the applied stress in the high-stress range, Δσ. Specimens with a 20 nm-thick Cu film (Specimen-20) are also investigated for comparison. The stress range in the fatigue fracture of Specimen-20 is higher than that of Specimen-200 for the same fatigue life. However, there is good coincidence in the Δσ/σs (σs: strength in monotonic load) vs. Nf (number of cycles to fracture) at high Δσ. The S-N curves suggest the existence of a fatigue threshold (Δσw) at low Δσ. The ratio of fatigue limit to the fracture stress in a monotonic loading, Δσw/σs, is large compared with the magnitude of bulk metal, which suggests the brittle behavior of the interface. Moreover, the fatigue limits have good coincidence with their yield stresses.  相似文献   

19.
This paper is aimed at evaluating the residual stress relaxation and its effect on the fatigue strength of AISI 316L steel ground surfaces in comparison to electro-polished surfaces. An experimental evaluation was performed using 3-point and 4-point bending fatigue tests at Rσ = 0.1 on two sets of notched specimens finished by electro-polishing and grinding. The residual stress fields were measured at the notch root of specimens, before and after fatigue tests, by means of the X-ray diffraction technique. It was found a degradation of about −35% for the 4-point bending fatigue limit at 2 × 106 cycles of the ground specimens in comparison to the electro-polished ones. This degradation is associated with a slight relaxation of the grinding residual stresses which remain significant tensile stresses at the stabilized state. While under the 3-point bending test, these residual stresses relax completely and provoke a noticeable increase of the fatigue limit estimated at about 50% in comparison to the 4-point bending fatigue test. The numerical evaluation of residual stress relaxation was carried out by FE analyses of the cyclic hardening behaviour of the ground layer. The isotropic and nonlinear kinematic model proposed by Chaboche was used and calibrated for the base material and the ground layer. The results show that residual stresses relax to a stabilized state characterized by elastic-shakedown response. This stabilization is occurred after the first cycle of the 4-point bending test corresponding to the higher stress concentration (Kt-4p = 1.66), while it requires many cycles under the 3-point bending test corresponding to the lower stress concentration (Kt-3p = 1.54). The incorporation of stabilized residual stress values into the Dang Van’s criterion has permitted to predict with an acceptable accuracy the fatigue limits under both bending modes.  相似文献   

20.
Fatigue notch factor and short crack propagation   总被引:1,自引:0,他引:1  
This paper addresses the problem of high cycle fatigue at notches and the role of short crack propagation in the fatigue notch factor kf. Ahead of a V-notched feature, the stress field is characterized by two parameters, i.e. the stress concentration factor kt and the normalized notch stress intensity factor kn. Whether fatigue strength at a given life is controlled by crack initiation (kf = kt) or by short crack propagation (kf < kt) depends on kt, kn and the material resistances to crack initiation and to short crack propagation. The analysis accounts for the effects of notch acuity, notch size, material and fatigue life on the fatigue notch factor kf. It opens the door to a new method for predicting fatigue life using two S-N curves for a given material; one being measured from a smooth specimen, the other from a severe V-notch.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号