首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In-vessel turbulent mixing phenomena affect the time and space distribution of coolant properties (e.g., boron concentration and temperature) at the core inlet which impacts consequently the neutron kinetics response. For reactor safety evaluation purposes and to characterize these phenomena it is necessary to set and validate appropriate numerical modelling tools to improve the current conservative predictions. With such purpose, an experimental campaign was carried out by OKB Gidropress, in the framework of the European Commission Project “TACIS R2.02/02 - Development of safety analysis capabilities for VVER-1000 transients involving spatial variations of coolant properties (temperature or boron concentration) at core inlet”. The experiments were conducted on a scaled facility representing the primary system of a VVER-1000 including a detailed model of the Reactor Pressure Vessel with its internals. The simulated transients involved perturbations of coolant properties distribution providing a wide validation matrix. The main achievements of the set of experiments featuring transient asymmetric pump behaviour are presented in this paper. The potential of the obtained experimental database for the validation of thermal fluid dynamics numerical simulation tools is also discussed and the role of computational fluid dynamics in supporting the experimental data analysis is highlighted.  相似文献   

2.
When the water level in the reactor pressure vessel (RPV) of a pressurized water reactor (PWR) is low enough and the core temperature is such that the coolant in that region boils, reflux-condensation conditions are established. Under such conditions, almost boron-free water is collected in a region of the primary system forming a non-borated slug. If subsequent natural circulation is established or a reactor coolant pump (RCP) is restarted, the slug could be transported to the core. This scenario configures an important part of the so-called boron issue. The Energy Systems Analysis Group at the Institute of Energy Technologies (INTE) of the Technical University of Catalonia (UPC) has studied the boron issue in three different stages. The steps were the following: participation in OECD-related projects, code improvement and investigation at nuclear power plant (NPP) scenarios. The third step is the main aim of this paper and consists of a continuation of the previous projects in the field of NPP analysis. The aim of this paper is to study SBLOCA transients with boron dilution in PWR. The chosen NPP was Ascó-2 which is a 3-loop-2940,6 MWth Westinghouse PWR. The paper contains some references to OECD/SETH and OECD/PKL experimental projects and analyses an established scenario including features of boron transport and sensitivity calculations for relevant parameters.  相似文献   

3.
The article presents a procedure to qualify the Trio_U code for the prediction of the boron concentration at the core inlet of a French 900 MWe pressurized water reactor under accidental conditions (inherent dilution problem).1 The objective of this procedure is to ensure that the validation calculations are performed with the same modelling hypotheses as the full scale reactor analysis, for which usually no experimental data are available. A density driven ROCOM experiment as well as an UPTF Tram-C3 experiment have been used for the qualification of the Trio_U code. Both experiments present similar thermal hydraulic conditions as the reactor case. The predicted boron concentration at the core inlet of the reactor shows that the potential return to criticality might not be excluded in the case of a small break LOCA. Further neutronic calculations are necessary to confirm this result.  相似文献   

4.
It is known that under-borated coolant can accumulate in the loops and that it can be transported towards the reactor core during a loss-of-coolant-accident. Therefore, the mixing of weakly borated water inside the reactor pressure vessel was investigated using the ROCOM test facility. Wire-mesh sensors based on electrical conductivity measurement are used to measure in detail the spreading of a tracer solution in the facility. The mixing in the downcomer was observed with a measuring grid of 64 azimuthal and 32 vertical positions. The resulting distribution of the boron concentration at the core inlet was measured with a sensor integrated into the lower core support plate providing one measurement position at the entry into each fuel assembly.

The boundary conditions for this mixing experiment are taken from an experiment at the thermal hydraulic test facility PKL operated by AREVA Germany. The slugs, which have a lower density, accumulate in the upper part of the downcomer after entering the vessel. The ECC water injected into the reactor pressure vessel falls almost straight down through this weakly borated water layer and accelerates as it drops over the height of the downcomer. On the outer sides of the ECC streak, lower borated coolant admixes and flows together with the ECC water downwards. This has been found to be the only mechanism of transporting the lower borated water into the lower plenum. In the core inlet plane, a reduced boron concentration is detected only in the outer reaches of the core inlet. The minimum instantaneous boron concentration that was measured at a single fuel element inlet was found to be 66.3% of the initial 2500 ppm.  相似文献   


5.
Load follow operations have been performed by manually changing the boron concentration in the reactor core and moving Control Element Assemblies (CEAs) for controlling the power and the power distribution. The manual operation of load follow requires experience and predictions related to core behavior following power changes because CEA movements distort the power distribution and a boron concentration control is also inaccurate and difficult due to the long time delay in boration/dilution operations. A boron concentration prediction model, accurately predict boron concentration in the reactor coolant system, including the chemical and volume control system (CVCS) following boration or dilution, was developed in order to enhance the boron concentration control during load follow operation. The model was developed using a multi-cell concept and integrated with the KOPEC Integrated Systems Performance Analysis Code (KISPAC), which is a system code used for design purposes. Boron concentration behavior was analyzed to verify the model for both direct and indirect injection using SKN 3&4 data. The load follow operation was simulated and the results were compared with the measured data obtained during the startup period. The developed model accurately predicted boron concentration behavior for all subsystems in the reactor control system and CVCS.  相似文献   

6.
For the validation of computational fluid dynamics (CFD) codes, experimental data on fluid flow parameters with high resolution in time and space are needed.Rossendorf Coolant Mixing Model (ROCOM) is a test facility for the investigation of coolant mixing in the primary circuit of pressurized water reactors. This facility reproduces the primary circuit of a German KONVOI-type reactor. All important details of the reactor pressure vessel are modelled at a linear scale of 1:5. The facility is characterized by flexible possibilities of operation in a wide variety of flow regimes and boundary conditions. The flow path of the coolant from the cold legs through the downcomer until the inlet into the core is equipped with high-resolution detectors, in particular, wire mesh sensors in the downcomer of the vessel with a mesh of 64 × 32 measurement positions and in the core inlet plane with one measurement position for the entry into each fuel assembly, to enable high-level CFD code validation. Two different types of experiments at the ROCOM test facility have been proposed for this purpose. The first proposal concerns the transport of a slug of hot, under-borated condensate, which has formed in the cold leg after a small break LOCA, towards the reactor core under natural circulation. The propagation of the emergency core cooling water in the test facility under natural circulation or even stagnant flow conditions should be investigated in the second type of experiment. The measured data can contribute significantly to the validation of CFD codes for complex mixing processes with high relevance for nuclear safety.  相似文献   

7.
The transport and mixing of a slug of deborated water in a lowered loop PWR is modeled by partitioning the volumes of the primary system according to chemical rector theory. Piping is modeled as plug flow volumes while the steam generator outlet plenum and the reactor coolant pumps are modeled as backmixed volumes. This simple approach provides a good representation of the transport and mixing phenomena outside the reactor vessel. The proposed methodology can be used to generate initial and boundary conditions for separate effects tests and CFD computations for the reactor vessel complex geometry. The decoupling of the ex-vessel primary system greatly enhances the resolution of boron dilution transient issue.  相似文献   

8.
堆芯入口流量分配研究是新型反应堆设计过程中一项重要的工程验证实验,其结果能为反应堆的热工水力及安全分析提供数据支撑。本文针对中国工程试验堆(CENTER),采用缩比模型开展了堆芯入口流量分配特性实验研究,在不同工况下获得了模拟燃料组件、铍/铝组件、钴靶组件及控制棒导向管内的流量分配因子。实验结果表明:在本文研究的工况范围中,堆芯中大部分冷却剂流过模拟燃料组件,同类型模拟组件间的流量分配较均匀,最大流量相对偏差在±4%以内。实验入口总流量对流量分配特性几乎没有影响。  相似文献   

9.
为了研究调硼稀释对压水反应堆一回路裂变产物源项的影响,利用一回路源项程序计算了平衡循环正常调硼,前段不调硼,整个过程不调硼三种条件下一回路裂变产物源项。结果表明,调硼稀释对平衡循环前期一回路源项影响不大,而对平衡循环后期一回路源项有较大影响,且不同类型核素受调硼稀释的作用大小也不同。最后为了判断调硼稀释对一回路各核素去除的相对作用,利用了图像法和比值法,结果表明两种方法均能较好表征调硼稀释对各核素的相对作用大小。  相似文献   

10.
双环路压水堆非对称入口条件下物理-热工特性研究   总被引:2,自引:0,他引:2  
双环路压水堆存在反应堆入口流量、温度不对称的非正常运行工况。本文建立了基于CFD方法的反应堆整体三维流场模型,并耦合中子动力学计算程序和RELAP5程序,对这种非对称入口条件下的反应堆物理-热工特性进行了数值模拟。结果表明:反应堆入口流量不对称会加剧堆芯入口流量分配的不均匀性,并进一步导致局部功率变化,对反应堆安全不利;在入口温度不对称的条件下,冷却剂在下腔室的混合非常不充分,并导致堆芯入口温度分布不均匀,引起局部功率变化较大,对反应堆安全不利。  相似文献   

11.
A full-scale ATHLET system model for the Syrian miniature neutron source reactor (MNSR) has been developed. The model represents all reactor components of primary and secondary loops with the corresponding neutronics and thermal hydraulic characteristics. Under the MNSR operation conditions of natural circulation, normal operation, step reactivity transients and reactivity insertion accidents have been simulated. The analyses indicate the capability of ATHLET to simulate MNSR dynamic and thermal hydraulic behaviour and particularly to calculate the core coolant velocity of prevailing natural circulation in presence of the strong negative reactivity feed back of coolant temperature. The predicted time distribution of reactor power, core inlet and outlet coolant temperature follow closely the measured data for the quasi steady and transient states. However, sensitivity analyses indicate the influence of pressure form loss coefficients at core inlet and outlet on the results. The analysis of reactivity accidents represented by the insertion of large reactivity, demonstrates the high inherent safety features of MNSR. Even in case of insertion of total available cold excess reactivity without scram, the high negative reactivity feedback of moderator temperature limits power excursion and avoids consequently the escalation of clad temperature to the level of onset of sub-cooled void formation. The calculated peak power in this case agrees well with the data reported in the safety analysis report. The ATHLET code had not previously been assessed under these conditions. The results of this comprehensive analysis ensure the ability of the code to test some conceptual design modifications of MNSR's cooling system aiming the improvement of core cooling conditions to increase the maximum continuous reactor operation time allowing more effective use of MNSR for irradiation purposes.  相似文献   

12.
为研究摇摆条件下小型反应堆强迫循环时堆芯入口处冷却剂的流量分配特性,采用数值计算的方法,使用计算流体力学(CFD)软件STAR-CCM+建立小型反应堆模型,完成模型验证,开展摇摆条件下反应堆堆芯入口流量分配特性研究。结果表明,堆芯入口位置距摇摆轴的距离越大,摇摆幅度越大,堆芯入口冷却剂流量波动越大;长周期摇摆对流量影响较小,但随着摇摆周期减小,冷却剂流量会发生跃变。堆芯入口冷却剂分布不均匀程度随摇摆幅度的增加而增加,但对摇摆周期变化并不敏感。  相似文献   

13.
Plant-measured data provided within the specification of the OECD/NEA VVER-1000 coolant transient benchmark (V1000CT) were used to validate the DYN3D/RELAP5 and DYN3D/ATHLET coupled code systems. Phase 1 of the benchmark (V1000CT-1) refers to the MCP (main coolant pump) switching on experiment conducted in the frame of the plant-commissioning activities at the Kozloduy NPP Unit 6 in Bulgaria. The experiment was started at the beginning of cycle (BOC) with average core expose of 30.7 effective full power days (EFPD), when the reactor power was at 27.5% of the nominal level and three out of four MCPs were operating. The transient is characterized by a rapid increase in the primary coolant flow through the core and, as a consequence, a decrease of the space-dependent core inlet temperature. Both DYN3D/RELAP5 and DYN3D/ATHLET analyses were based on the same reactor model, including identical MCP characteristics, boundary conditions, benchmark-specified nuclear data library and nearly identical nodalization schemes. For an adequate modelling of the redistribution of the coolant flow in the reactor pressure vessel during the transient a simplified mixing model for the DYN3D/ATHLET code was developed and validated against a computational fluid dynamics calculation.

The results of both coupled code calculations are in good agreement with the available experimental data. The discrepancies between experimental data and the results of both coupled code calculations do not exceed the accuracy of the measurement data. This concerns the initial steady-state data as well as the time histories during the transient. In addition to the validation of the coupled code systems against measured data, a code-to-code comparison between simulation results has been performed to evaluate relevant thermal hydraulic models of the system codes RELAP5 and ATHLET and to explain differences between the calculation results.  相似文献   


14.
《Annals of Nuclear Energy》1999,26(15):1331-1339
Subsequent studies have identified many scenarios, which can lead to reactivity excursions due to boron dilution. The comparative study, presented in this paper, deals with the so-called “restart of the first reactor coolant pump’’ scenario and its reactor-dynamic consequences for both Russian designed VVER reactor types, VVER-440 and VVER-1000. The transient simulations were performed using the three-dimensional core dynamics code DYN3D. The DYN3D modeling features, including recent developments, as well as the cross-section methodology involved in these calculations, are described. The analyzed accident scenario is outlined together with the assumptions made. The results of core response in this boron dilution accident for both VVER reactors are compared within the ranges, determined by the two reactivity values of interest: the criticality limit and the reactivity initiated accident (RIA) limit.  相似文献   

15.
A parameter study, incorporating stationary and transient core calculations, was carried out for a hypothetical boron dilution event in a pressurized water reactor, using the three-dimensional (3D) neutron kinetics core model DYN3D in combination with a fast running semi-analytical coolant mixing model. It was assumed that a slug of deborated water was formed in one of the loops, due to a secondary-to-primary steam generator leakage during outage. It was further assumed that this slug is not recognised and that the first main coolant pump is started, in preparation to returning to power. At the initiation of pump start-up, the reactor is still in the cold and deeply sub-critical state. By varying the initial slug volume, it was found in stationary calculations that, for the given core configuration, slugs of less than 14 m3 do not lead to re-criticality. Transient core calculations with larger slug volumes show a significant reactivity insertion and over-criticality. However, according to the calculations, even an over-criticality of about 2$ did not lead to safety-relevant consequences. The power excursion is mitigated and stopped by Doppler feedback. The influence of the cross-section library on the course of the transient was investigated, applying an alternative library. Differences in the global core parameters lead to quantitative differences in the time and height of the power excursion. In addition, it is shown that numerical diffusion has to be suppressed in order to describe the boron transport correctly, especially at low flow velocities. Otherwise the neutron kinetic core behaviour cannot be correctly modelled.  相似文献   

16.
A boron dilution scenario caused by the connection of a previously disconnected primary circuit loop in a Russian WWER-440 type reactor is considered. The scenario is specific for this reactor type because of the existence of main isolating valves (MIVs) in the loops. The additional failure of safety systems during the connection procedure was assumed. The analysis was carried out by the combined use of SiTAP and DYN3D. Several modifications of the scenario were considered using the fast running plant simulator code SiTAP. The scenario with the most dangerous consequences was identified and has been analysed using the three-dimensional core model DYN3D, including a coolant mixing model for the lower plenum. The boundary conditions for the DYN3D analysis were obtained from SiTAP calculation. Comparing the results of both codes, a similar behaviour of the mean reactor parameters can be observed, but in the 3D analysis local exceeding of safety relevant parameters was btained. Thus, the point kinetics model is not conservative, but by using SiTAP more realistic time-dependent boundary conditions for the 3D model could be provided than in previous analyses. The strong consequences of the considered scenario suggest the necessity of additional measures for preventing this type of accidents.  相似文献   

17.
Plant-measured data provided by the OECD/NEA VVER-1000 coolant transient benchmark programme were used to validate the DYN3D/RELAP5 and DYN3D/ATHLET coupled code systems. Phase 1 of the benchmark (V1000CT-1) refers to an experiment that was conducted during the commissioning of the Kozloduy NPP Unit 6 in Bulgaria. In this experiment, the fourth main coolant pump was switched on whilst the remaining three were running normal operating conditions. The experiment was conducted at 27.5% of the nominal level of the reactor power. The transient is characterized by a rapid increase in the primary coolant flow through the core, and as a consequence, a decrease of the space-dependent core inlet temperature. The control rods were kept in their original positions during the entire transient. The coupled simulations performed on both DYN3D/RELAP5 and DYN3D/ATHLET were based on the same reactor model, including identical main coolant pump characteristics, boundary conditions, benchmark-specified nuclear data library and nearly identical nodalization schemes. In addition to validation of the coupled code systems against measured data, a code-to-code comparison between simulation results has also been performed to evaluate the respective thermal hydraulic models of the system codes RELAP5 and ATHLET.  相似文献   

18.
In a sodium-cooled fast reactor (SFR), inert gases exist in the primary coolant system either in a state of dissolved gas or free gas bubbles. The sources of the gas bubbles are entrainment and dissolution of the reactor cover gas (argon) at the vessel free surface and emission of the helium gas that is produced as a result of disintegration of B4C control rod material. The gas in the primary system may cause disturbance in reactivity, nucleation site for boiling, etc. Therefore, it is a key issue from the design and safety viewpoint and the allowance level is necessary regarding the gas entrainment at the free surface and the gas bubble concentration in the primary system. In the present study, a gas entrainment allowance level at the free surface is discussed and rationalized for the Japanese SFR (JSFR) design. The influence of the gas entrainment is evaluated using the void fraction at the core inlet. Design criteria for the acceptable level of the gas entrainment and gas concentration are proposed in consideration of the background level of gasses in the coolant. For the purpose, a plant dynamics code VIBUL has been developed to apply to the JSFR design to evaluate the concentration distribution of the dissolved gas and the free gas bubble in the JSFR system. Using the plant dynamics code for the bubble behavior, the background level of the free gas (void fraction at the core inlet) has been obtained. Assuming that the total void fraction should be kept below 105% of the background level, a preliminary design allowance level of gas entrainment is proposed as the map in terms of the entrainment rate and the entrained bubble radius. Furthermore, the possibility of bubble removal and design requirement of the device is investigated to satisfy the allowance level. It is noted that the background level is already very low in comparison with the induced void reactivity by the void passing the reactor core.  相似文献   

19.
Anticipated-transient-without-scram (ATWS) of the supercritical-pressure light water cooled thermal reactor with downward-flow water rods (Super LWR) is analyzed to clarify its safety characteristics. At loss-of-flow, heat-up of the fuel cladding is mitigated by the water rods removing heat from the fuel channels by heat conduction and supplying their coolant inventory to the fuel channels by volume expansion. The average coolant density is not sensitive to the pressure due to the small density difference between “steam” and “water” at supercritical-pressure. Closure of the coolant outlet of the once-through system causes flow stagnation that suppresses an increase in the coolant density due to an increase in the temperature. Therefore, the increase in power is small for pressurization events. The coolant density and Doppler feedbacks provide good self-controllability of the power against loss-of-flow and reactivity insertion. An alternative action is not needed either to satisfy the safety criteria or to achieve a high-temperature stable condition for all ATWS events. Initiating the automatic depressurization system is a good alternative action that induces a strong core coolant flow and inserts a negative reactivity. It provides an additional safety margin for the ATWS events. Even the high core power rating of the Super LWR has excellent ATWS characteristics, providing a key reactor design advantage.  相似文献   

20.
An HTR-Module power plant consists of standardized reactor units with a power rating of 200 MW each, so that the special, inherent safety features of small high-temperature reactors are also applicable to power plants of any desired power rating. The main design features of the reactor and vital components are given. Special emphasis is layed on a comprehensive survey of design basis accidents and the corresponding accident doses in the environment. It is shown that these doses are much lower than the maximum allowable values given in the German Radiation Protection Ordinance even if it is postulated that the installed filters of the reactor building are not available.Finally, a summary of essential properties and design principles of the HTR-Module is given. These properties and principles were fully approved and accepted by the advisory experts (TÜV) of the German Licensing Authorities in their final assessment report on the conceptual design of the HTR-Module (November 1989).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号