首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
2.
Mutations in the low density lipoprotein (LDL) receptor gene cause familial hypercholesterolemia, a human disease characterized by premature atherosclerosis and markedly elevated plasma levels of LDL cholesterol and apolipoprotein (apo) B100. In contrast, mice deficient for the LDL receptor (Ldlr-/-) have only mildly elevated LDL cholesterol levels and little atherosclerosis. This difference results from extensive editing of the hepatic apoB mRNA in the mouse, which limits apoB100 synthesis in favor of apoB48 synthesis. We have generated Ldlr-/- mice that cannot edit the apoB mRNA and therefore synthesize exclusively apoB100. These mice had markedly elevated LDL cholesterol and apoB100 levels and developed extensive atherosclerosis on a chow diet. This authentic model of human familial hypercholesterolemia will provide a new tool for studying atherosclerosis.  相似文献   

3.
Diet-induced hyperlipidaemia in baboons is similar to that in humans. As in humans, the ratio between low density lipoprotein (LDL) and high density lipoprotein (HDL) cholesterol is a major determinant of atherosclerosis. Baboons, like humans and other non-human primates, vary in their lipaemic responses to dietary lipids. By selective breeding based on variability in plasma and lipoprotein cholesterol response to diet, lines of baboons with high and low responses of various lipoproteins have been developed. Genetic analyses suggest that lipoprotein patterns in response to dietary cholesterol and fat are heritable. Metabolic and molecular studies of high and low LDL and HDL cholesterol responses to dietary lipids have suggested that different mechanisms regulate plasma LDL cholesterol on the chow and on the high cholesterol-high fat (HCHF) diet. On the chow diet, plasma LDL cholesterol levels are positively associated with cholesterol absorption and negatively associated with hepatic LDL receptor levels and, thus, cholesterol absorption and LDL receptors seem to regulate plasma LDL cholesterol levels. However, when the animals consume a human-like fat- and cholesterol-enriched diet, plasma LDL cholesterol levels are not associated with either cholesterol absorption or hepatic LDL receptor mRNA levels, but are negatively associated with plasma 27-hydroxycholesterol concentrations, hepatic sterol 27-hydroxylase activity, and mRNA levels. Hepatic sterol 27-hydroxylase activity and mRNA levels are induced by dietary cholesterol and fat in low responding baboons more than in high responding baboons. Thus, the ability to induce sterol 27-hydroxylase determines the LDL cholesterol response in baboons. High HDL response baboons often have high levels of HDL1 in their plasma. Our studies suggest that the N-terminal fragment of apo C-I with 38 amino acids and a molecular weight of approximately 4 kDa acts as a cholesteryl ester transfer inhibitor peptide in high HDL1 baboons. The inhibitor peptide associates with apo A-1 in HDL to produce a modified apo A-1 protein with a molecular weight of approximately 31 kDa. The inhibitor peptide is a gene product and the presence of this peptide produces an antiatherogenic high HDL1 phenotype.  相似文献   

4.
The aim of this study was the characterization of mutations of the LDL receptor gene in 39 Italian patients with homozygous familial hypercholesterolemia, who were examined during the period 1994 to 1996. The age of the patients ranged from 1 to 64 years; one third of them were older than 30. Plasma LDL cholesterol level ranged from 10.8 to 25.1 mmol/L. The residual LDL receptor activity, measured in cultured fibroblasts of 32 patients, varied from <2% to 30% of normal and was inversely correlated with the plasma LDL cholesterol level (r=-0.665; P<0.003). The most severe coronary atherosclerosis was observed in those patients with the lowest residual LDL receptor activity (相似文献   

5.
The LDL receptor is a cell surface glycoprotein that regulates plasma cholesterol by mediating endocytosis of LDL, the major cholesterol transport protein in human plasma. Mutations in the LDL receptor gene cause familial hypercholesterolemia (FH). The LDL receptor was purified in 1982, its cDNA was cloned in 1984 by Yamamoto et al, and its gene was isolated in 1985 by Sudhof et al. This review attempts to focus on the molecular basis of the LDL receptor pathway and its regulatory roles in cholesterol homeostasis in the body.  相似文献   

6.
7.
8.
The subendothelial accumulation of macrophage-derived foam cells is one of the hallmarks of atherosclerosis. The recruitment of monocytes to the intima requires the interaction of locally produced chemokines with specific cell surface receptors, including the receptor (CCR2) for monocyte chemoattractant protein-1 (MCP-1). We have previously reported that monocyte CCR2 gene expression and function are effectively downregulated by proinflammatory cytokines. In this study we identified low density lipoprotein (LDL) as a positive regulator of CCR2 expression. Monocyte CCR2 expression was dramatically increased in hypercholesterolemic patients compared with normocholesterolemic controls. Similarly, incubation of human THP-1 monocytes with LDL induced a rapid increase in CCR2 mRNA and protein. By 24 hours the number of cell surface receptors was doubled, causing a 3-fold increase in the chemotactic response to MCP-1. The increase in CCR2 expression and chemotaxis was promoted by native LDL but not by oxidized LDL. Oxidized LDL rapidly downregulated CCR2 expression, whereas reductively methylated LDL, which does not bind to the LDL receptor, had only modest effects on CCR2 expression. A neutralizing anti-LDL receptor antibody prevented the effect of LDL, suggesting that binding and internalization of LDL were essential for CCR2 upregulation. The induction of CCR2 expression appeared to be mediated by LDL-derived cholesterol, because cells treated with free cholesterol also showed increased CCR2 expression. These data suggest that elevated plasma LDL levels in conditions such as hypercholesterolemia enhance monocyte CCR2 expression and chemotactic response and potentially contribute to increased monocyte recruitment to the vessel wall in chronic inflammation and atherogenesis.  相似文献   

9.
Hyperlipoproteinemia is one of the phenotypic characteristics of the fat Zucker rat that carries a mutation in the leptin receptor gene. In the present study, we studied the regulation of hepatic low density lipoprotein (LDL) receptor expression in lean and fat Zucker rats. Compared with lean rats, the fat ones had a pronounced (approximately 60%) reduction in hepatic LDL receptor expression, whereas the levels of receptor messenger RNA (mRNA) were not reduced. Fat rats had increased levels of very low density lipoproteins and high density lipoproteins, but their plasma apo B100 within LDL was reduced. Challenge with 2% dietary cholesterol for 8 days suppressed hepatic LDL receptor expression in lean animals to similar levels as seen in fat ones, whereas the reduction in mRNA levels was much less pronounced. Treatment with ethynylestradiol (5 mg/kg BW per day) for 4 days strongly stimulated hepatic LDL receptor expression in both lean and fat rats; this treatment also increased LDL receptor mRNA levels, but to a lesser extent. In conclusion, the basal expression of hepatic LDL receptors is reduced in fat Zucker rats, but the capacity for the regulation of the receptors remains intact.  相似文献   

10.
Rat adrenocortical cells utilize both low density lipoprotein (LDL) and high density lipoprotein (HDL) cholesterol for steroid hormone production. In addition to exogenous lipoprotein-derived cholesterol, cells produce cholesterol de novo. Adrenocorticotropin (ACTH) increases both steroid hormone secretion and uptake of LDL and HDL. We studied the expression of LDL receptor mRNA and CLA-1 (a putative HDL receptor) mRNA in cultured rat adrenocortical cells. ACTH increased the amounts of LDL receptor mRNA during 2 to 48 h of stimulation, the highest levels being detected after 2-4 h. Similar results were obtained with cyclic AMP (cAMP) derivatives, 8-bromo cAMP (8-Br cAMP) or dibutyryl cAMP. ACTH increased CLA-1 mRNA during 2 to 24 h of stimulation, the highest levels being detected after 4 h. In conclusion, ACTH up regulates both LDL and HDL receptor mRNA in rat adrenocortical cells.  相似文献   

11.
Hypothyroidism is frequently associated with hypercholesterolemia and an increased risk for atherosclerosis, whereas hyperthyroidism is known to precipitate angina or myocardial infarction in patients with underlying coronary heart disease. We have shown previously that L-T4 functions as an antioxidant in vitro and inhibits low density lipoprotein (LDL) oxidation in a dose-dependent fashion. The present study was designed to evaluate the changes in LDL oxidation in subjects with hypothyroidism and hyperthyroidism. Fasting blood samples for LDL oxidation analyses, lipoprotein determinations, and thyroid function tests were collected at baseline and after the patients were rendered euthyroid. The lag phase (mean +/- SEM hours) of the Cu+2-catalyzed LDL oxidation in the hypothyroid state and the subsequent euthyroid states were 4 +/- 0.0.65 and 14 +/- 0.68 h, respectively (P < 0.05). The lag phase during the hyperthyroid phase was 6 +/- 0.55 h, and that during the euthyroid phase was 12 +/- 0.66 h (P < 0.05). The total and LDL cholesterol levels were higher in hypothyroidism than in euthyroidism and were lower in hyperthyroidism than in the euthyroid state. We conclude that LDL has more susceptibility to oxidation in both the hypothyroid and hyperthyroid states. Thus, the enhanced LDL oxidation may play a role in the cardiac disease process in both hypothyroidism and hyperthyroidism.  相似文献   

12.
Experimental and clinical data suggest that activation of the LDL receptors by the use of HMG CoA reductase inhibitors, in the presence of normal plasma cholesterol levels, may result in a reduction of Lp(a) concentrations. This hypothesis has been tested in an open study on seven subjects with normal cholesterolemia but marked elevations of Lp(a) levels, three of whom received pravastatin and four simvastatin at standard therapeutic doses. While the two drugs caused the expected reduction of plasma total and LDL cholesterol levels, no significant changes in Lp(a) were noted. This study contradicts a prior clinical finding and suggests that HMG CoA reductase inhibitors are unlikely to reduce plasma Lp(a) levels even in the absence of hypercholesterolemia.  相似文献   

13.
The purpose of the present study was to reexamine the relationship between alcohol and atherosclerosis. Two experiments were performed: The first contained three groups of New Zealand White (NZW) female rabbits. The control group was fed a cholesterol-containing liquid diet and the other two groups were fed the same diet with either 20% or 30% of the calories supplied by alcohol. The second experiment had two treatments: one control group and another group fed a 10% alcohol diet. In experiment 1, alcohol at the 20% and 30% levels increased VLDL and LDL but not HDL compared with levels in control rabbits. Hepatic mRNA levels of apolipoprotein (apo) A-I, apoB, and 7 alpha-hydroxylase were not affected by alcohol. However, the LDL-receptor mRNA was decreased to half of control values by either 20% or 30% alcohol. Lesion areas and aortic cholesterols were significantly increased in the 20% and 30% alcohol-treated groups. Also, significant correlations were found between plasma cholesterol levels and total lesion area or lesion cholesterol contents. In experiment 2, the 10% alcohol-treated rabbits showed no differences in circulating lipoproteins, LDL-receptor mRNA, or lesion formation above that observed in controls. These experiments suggest that alcohol substituted at 20% or 30% of the dietary calories induces hypercholesterolemia and more aortic atherosclerotic lesions. The alcohol-induced accumulation of VLDL and LDL was accompanied by low hepatic LDL-receptor mRNA levels, suggesting that alcohol may affect LDL-receptor expression and rates of lipoprotein clearance, but more experiments are needed to evaluate this possibility.  相似文献   

14.
Treatment of patients with amiodarone, a potent anti arrhythmic drug, increases plasma LDL cholesterol levels, similar to that seen during hypothyroidism. This increase is the result of a decreased expression of the hepatic LDL receptor gene. We investigated the effects of thyroid hormone, amiodarone and desethylamiodarone on the first 687 bp upstream of the first ATG of the human LDL receptor gene by co-transfection with TRbeta1 into HepG2 cells. Promoter activity showed a dose-dependent increase upon addition of thyroid hormone up to a maximum of 600% at 10(-6) M T3. Using 5'-deletions it was found that a functional TRE(s) is present between -687 bp and -160 bp upstream of the ATG of the LDL receptor gene. Amiodarone and desethylamiodarone at 10(-6) M reduced basal LDL receptor promoter activity further then with the TRbeta1 alone (to 30% vs. 50% respectively, p<0.01) but interestingly in combination with T3 these compunds show a synergistic effect on promoter activity (to 225% T3 alone vs. 380% respectively, p<0.01).  相似文献   

15.
To establish whether additional therapy with 3-hydroxy-3-methylglutaryl (HMG) coenzyme A (CoA) reductase inhibitors enhances the low-density lipoprotein (LDL) cholesterol lowering effect of LDL apheresis with immunoadsorption in the treatment of patients with familial heterozygous hypercholesterolemia and coronary artery disease we studied eight patients initially on immunoadsorption therapy alone for 3 years. The adding of HMG CoA reductase inhibitors decreased pretreatment LDL cholesterol from 6.76 +/- 0.98 to 4.97 +/- 0.98 mmol/l and posttreatment LDL cholesterol from 2.33 +/- 0.80 to 1.94 +/- 0.67 mmol/l and increased pre- and posttreatment high-density lipoprotein (HDL) cholesterol by 0.08 and 0.13 mmol/l respectively. The LDL/HDL ratio was reduced from 4.0 to 2.8 (prior to any therapy the ratio was 13.4). The increase in LDL cholesterol between weekly treatments was less steep under the combined therapy. At the same time the treated plasma volume during LDL apheresis could be decreased from 5070 +/- 960 to 4370 +/- 1200 ml. We conclude that in patients with severe familial heterozygous hypercholesterolemia LDL apheresis should be combined with HMG CoA reductase inhibitors.  相似文献   

16.
Low density lipoprotein (LDL) reduction independent of LDL receptor regulation was investigated using HMG-CoA reductase inhibitors in LDL receptor-deficient mice. In males, LDL cholesterol dose-dependently decreased with atorvastatin treatment after 1 week. As untreated mice grew older, their LDL cholesterol progressively rose above basal levels, but was quelled with atorvastatin treatment. In females, atorvastatin treatment time-dependently decreased LDL cholesterol levels and induced hepatic HMG-CoA reductase activity. Unlike males, cholesterol-lowering effects of the drug were sustained in females. Lovastatin, simvastatin, and pravastatin also reduced total and LDL cholesterol; however, additional studies in females demonstrated that atorvastatin caused the greatest dose-dependent and sustained effect after 2 weeks. In females, hepatic HMG-CoA reductase mRNA inversely correlated with LDL cholesterol lowering, with atorvastatin showing the greatest increase in mRNA levels (17.2-fold), followed by lovastatin (10.7-fold), simvastatin (4.1-fold), and pravastatin (2.5-fold). Atorvastatin effects on lipoprotein production were determined after acute (1 day) or chronic (2 week) treatment prior to intraperitoneal injection of Triton WR1339. Acute treatment reduced cholesterol (-29%) and apoB (-16%) secretion, with no change in triglyceride secretion. In contrast, chronic treatment elevated cholesterol (+20%), apoB (+31%), and triglyceride (+57%) secretion. Despite increased cholesterol and apoB secretion, plasma levels were reduced by 51% and 46%, respectively. Overall, under acute or chronic conditions, apoB paralleled cholesterol secretion rates, and triglyceride to cholesterol secretion ratios were elevated by 38% and 32%, respectively. We propose that atorvastatin limits cholesterol for lipoprotein assembly, which is compensated for by triglyceride enrichment. In addition, with either acute or chronic atorvastatin treatment, apoB-100 secretion was blocked, and compensated for by an increased secretion of apoB-48. The apoB-48 particles produced are cleared by LDL receptor-independent mechanisms, with an overall effect of reducing LDL production in these mice. These studies support the idea that HMG-CoA reductase inhibitors modulate lipoprotein levels independent of LDL receptors, and suggest they may have utility in hyperlipidemias caused by LDLreceptor disorders.  相似文献   

17.
Scavenger receptor type B class I (SR-BI), initially identified as a receptor that recognizes low density lipoprotein (LDL), was recently shown to mediate the selective uptake of high density lipoprotein (HDL) cholesteryl esters in liver and steroidogenic tissues. To evaluate effects on atherosclerosis, transgenic mice with liver-specific overexpression of SR-BI (SR-BI Tg mice) have been crossed onto LDL receptor-deficient backgrounds. To induce atherosclerosis in a setting of moderate hypercholesterolemia, heterozygous LDL receptor-deficient mice (LDLR1) were fed a high fat/cholesterol/bile salt diet, and homozygous LDL receptor knock-outs (LDLR0) were fed a high fat/cholesterol diet. LDLR1/SR-BI Tg mice showed decreases in VLDL, LDL, and HDL cholesterol and a significant 80% decrease in mean lesion area in the aortic root compared with LDLR1 mice (female LDLR1 74, 120 micrometers(2) versus LDLR1/SR-BI Tg 12, 667 micrometers(2); male 25, 747 micrometers(2)++ versus 5, 448 micrometers(2), respectively). LDLR0/SR-BI Tg mice showed decreased LDL and HDL cholesterol but increased VLDL cholesterol and no significant difference in extent of atherosclerosis compared with LDLR0 mice. Combined data analysis showed a strong correlation between atherosclerotic lesion area and the VLDL+LDL cholesterol level but no correlation with HDL level. These studies demonstrate a strong anti-atherogenic potential of hepatic SR-BI overexpression. In mice with marked overexpression of SR-BI, the protective effect appears to be primarily related to the lowering of VLDL and LDL cholesterol levels.  相似文献   

18.
Sterol 27-hydroxylase plays an important role in cholesterol metabolism in hepatic and extrahepatic tissues. To determine whether female sex steroid hormones influence its expression, we measured plasma and hepatic 27-hydroxycholesterol, hepatic mRNA levels, activity of sterol 27-hydroxylase, and adrenal mRNA levels of this enzyme in baboons (n = 6 per group) treated with placebo, estrogen, estrogen + progesterone, and progesterone. We also measured hepatic cholesterol concentration and hepatic acyl coenzyme A:cholesterol acyltransferase (ACAT) activity to determine their relationship with hepatic sterol 27-hydroxylase activity. Plasma 27-hydroxycholesterol concentration was increased by estrogen and estrogen + progesterone and was negatively correlated with plasma (P = .090) and LDL (P = .026) cholesterol concentrations. Similarly, hepatic sterol 27-hydroxylase activity was increased by estrogen and estrogen + progesterone and was negatively correlated with plasma (P = .056) and LDL (P = .052) cholesterol concentrations but was positively correlated with hepatic and plasma 27-hydroxycholesterol concentrations (P < .001). Hepatic ACAT activity was increased by progesterone (P < .004) and was positively correlated with plasma (P = .002) and LDL (P = .009) cholesterol concentrations but was negatively correlated with hepatic sterol 27-hydroxylase activity (P = .035). Hepatic and adrenal gland mRNA levels for sterol 27-hydroxylase were increased by estrogen alone or in combination with progesterone (P < .05). Hepatic sterol 27-hydroxylase activity was positively correlated with hepatic mRNA levels (P < .001), an observation suggesting that estrogen increases the activity of sterol 27-hydroxylase by increasing its synthesis. Hepatic cholesterol concentration was not influenced by the hormone treatment. These observations suggest that estrogen alone or in combination with progesterone increases the synthesis of sterol 27-hydroxylase in hepatic and extrahepatic tissues, and the increased activity of hepatic sterol 27-hydroxylase resulting from the increased synthesis is associated with a hypolipidemic effect on plasma LDL levels. Furthermore, progesterone alone increases the hepatic ACAT activity, but given in combination with estrogen progesterone does not have the same effect on hepatic ACAT activity. The effect of estrogen on hepatic ACAT activity may be mediated by sterol 27-hydroxylase and its effect on cholesterol metabolism (decreased cholesterol synthesis and increased output of cholesterol in the bile) in liver.  相似文献   

19.
Hypothyroidism leads to an increase of plasma low-density lipoprotein (LDL) cholesterol levels. Oxidation of LDL particles changes their intrinsic properties, thereby enhancing the development of atherosclerosis. T4 has three specific binding sites on apolipoprotein B; furthermore it inhibits LDL oxidation in vitro. We therefore hypothesized that T4 deficiency not only results in elevated LDL-cholesterol levels but also in increased LDL oxidation. Ten patients with overt hypothyroidism were studied when untreated (TSH 76 +/- 13 mU/L, T4 40 +/- 6 nmol/L) and again when they were euthyroid for at least 3 months during T4 treatment (TSH 2.7 +/- 0.5 mU/L, T4 115 +/- 11 nmol/L). Plasma lipids and lipoproteins and the oxidizability and chemical composition of LDL were determined. The transition from the hypothyroid to the euthyroid state was associated with a decrease (mean +/- SE) of plasma total cholesterol (5.8 +/- 0.3 vs. 4.8 +/- 0.2 mmol/L, P < 0.005), LDL cholesterol (3.8 +/- 0.3 vs. 2.9 +/- 0.2 nmol/L, P < 0.005) and apolipoprotein B (1.2 +/- 0.1 vs. 0.9 +/- 0.1 g/L, P < 0.005); plasma high-density lipoprotein cholesterol, apolipoprotein A-1, and triglycerides did not change. The actual content of dienes in LDL particles was increased in hypothyroidism, with a decrease after T4 suppletion [median (range) = 257 (165-346) vs. 188 (138-254) nmol/mg LDL protein, P < 0.005; reference range 140-180]. The lag time, an estimate of the resistance of LDL against oxidation in vitro, was shortened when hypothyroid but normalized after T4 treatment [29 (19-90) vs. 77 (42-96) min, P < 0.005; reference range 67-87]. The density, the relative fatty acid content, and the vitamin E content of LDL particles did not change. In conclusion, the hypothyroid state is not only associated with a quantitative increase of LDL particles, but it also changes their quality by increasing LDL oxidizability.  相似文献   

20.
Treatment with pharmacological doses of estrogen is the most potent way to stimulate hepatic LDL receptor expression in vivo. The mechanism for this effect is unclear, in part because of difficulties in inducing this stimulation in vitro. A fundamental question, whether estrogen receptors (ERs) mediate this stimulation, has not been addressed. The aim of the current study was to determine the involvement of ERs in the estrogen-induced stimulation of LDL receptors. Treatment of rats with high doses of ethynylestradiol for 7 days increased the hepatic LDL receptor protein and mRNA levels four- and threefold, respectively. LDL receptor stimulation in estrogen-treated rats was not due to their reduced food intake because hepatic LDL receptor expression did not increase in rats fasted for 72 hours. Treatment with antiestrogen (tamoxifen or clomiphene) abolished the LDL receptor stimulatory effect of ethynylestradiol at both the protein and mRNA levels. Antiestrogen alone had no effect on hepatic LDL receptor expression and did not influence the strong resistance to dietary cholesterol normally present in rats. It is concluded that ERs are critically involved in the induction of hepatic LDL receptor expression by ethynylestradiol. The known role of growth hormone for the expression of hepatic ERs may therefore play a role in the modulation of the effects of estrogen on cholesterol metabolism and hepatic LDL receptors in the rat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号