首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1 Introduction High Nb containing TiAl alloys have attracted much attention owing to their low densities and potential applications at high-temperature environments[1,2]. It has been found that Nb is the essential and effective element improving their me…  相似文献   

2.
Diffusion behavior of Nb in elemental powder metallurgy high Nb containing TiAl alloys was investigated. The results show that Nb element dissolves into the matrix by diffusion. Pore nests are formed in situ after Nb diffusion. With the increase in hot pressing temperature, the diffusion of Nb will be more sufficient, and the microstructure is more homogeneous. Nb element diffuses completely at 1400℃. Meanwhile, compression deformation and agglomeration phenomena of pores are observed in some pore nests. Hot isostatic pressing (HIP) treatment can only efficiently decrease but not eliminate porosity completely.  相似文献   

3.
High-Nb containing (6–10 at.%) TiAl alloys exhibit excellent high-temperature strength and oxidation resistance. However, they are difficult to be fabricated into sheet in comparison with the conventional TiAl alloys. In the present work, the hot-deformation behavior of a high Nb–TiAl alloy (Ti–45Al-8.5Nb-0.2W-0.2B-0.03Y) was investigated. Hot-rolling process was optimized and carried out directly from the PAM (Plasma Arc Melting) ingot without the hot isostatic pressing (HIP) and hot forging. The hot-rolled sheets were successfully manufactured with dimensions up to 360 mm × 100 mm × 3.5 mm. The microstructure of as-rolled sheet is a typical “near gamma” characteristic with an average grain size about 15 μm. In the view of breakdown the lamellar colonies of high Nb–TiAl alloy ingot, the direct hot-rolling process has advantage over hot can forging and extrusion. Moreover, mechanical properties at room and high temperatures were also tested. Noteworthily, the as-rolled high Nb–TiAl alloy shows superplasticity above 950 °C at relatively high strain rate of 5 × 10−4.  相似文献   

4.
由于焊接性能好,成本低,碳钢材料常被用于制作热等静压致密化TiAl基合金粉末的包套。在高温高压下,碳钢包套和TiAl基合金粉末通过原子扩散在扩散区形成脆性相,导致包套失效,并降低TiAl基合金压坯的致密度。为了确保碳钢包套在热等静压致密化TiAl基合金粉末过程中的可靠性,本文利用热喷涂的方法在20#钢包套内壁添加了Al2O3/ZrO2(A-Z)涂层,然后在 。在热等静压试验中,带有A-Z涂层的20#钢包套用于热等静压致密化Ti-46Al-2Cr-2Nb-(W, B)预合金粉末,其工艺为:1523K,2.5小时,130MPa+1603K,0.5小时,130MPa。为了对比,利用没有A-Z涂层的20#钢包套在1523K,3小时,130MPa的工艺参数开展了热等静压致密化试验。利用扫描电镜、电子探针等设施对获得的压坯进行了观测和分析。结果表明:A-Z涂层的加入可以防止脆性金属间化合物的形成。在热等静压过程中,20#钢包套中的Fe原子无法通过扩散的方式与TiAl基合金中的钛原子和铝原子相遇。因此,20#钢包套在热等静压过程中的可靠性得到了保证。此外,通过利用添加A-Z涂层的钢包套获得了完全致密的TiAl基合金压坯。压坯呈现出了近全片层类型的微观组织,其室温下的抗拉强度和延伸率也分别突破了590MPa和2.0%。  相似文献   

5.
Direct explosive compaction and sintering of a mixture of Ti-30Al-2Mn(wt%)and Ti-38Al-2Mn(wt%)intermetallic compound powders were carried out.Microstructure and phase characteristics of the alloyswere analysed by TEM,SEM,X-ray diffractometry and optical microscopy.The results showed that the rel-ative density of the samples which were explosive-compacted and sintered reached 99.90%,and fine grainstructure was obtained.Through the explosive-compacting and then sintering at 1373 K in argon atmos-phere,mutual diffusion between Ti-30Al-2Mn particles and Ti-38Al-2Mn particles took place and TiAlphase was formed in the alloy.TiAl based alloys prepared by high-energy ball-milling powders had much fi-ner grain size than those prepared by general ball-milling powdeis.  相似文献   

6.
利用Deform-3D软件对高铌TiAl合金包套锻造过程中的微观组织演变进行模拟。为得到模拟所需参数,在1100~1250℃和0.001~0.5 s-1的条件下对合金进行了热压缩试验。在所得试验数据的基础上,利用一种间接方法建立了合金的动态再结晶模型,并利用Avrami形式的方程对再结晶分数进行描述。采用Cingara硬化模型及所建立的再结晶分数模型构建了合金的流变应力本构模型。模拟结果显示,由于锻造过程中摩擦的存在、热量的损失以及简单单向镦粗变形的锻造方式,使得坯料中的微观组织分布不均匀。通过模拟结果与实验结果的比较,证明所建立的有限元模型能够有效地预测高铌TiAl合金在包套锻造过程中的组织演变。  相似文献   

7.
利用箔-纤维-箔法和热压烧结成功制备出Mof/Ti48Al复合材料,并分析了Mo纤维对TiAl合金显微组织和力学性能的影响。结果表明,通过635 ℃,3 MPa,10 h+680 ℃,3 MPa,4 h的两步低温热压,箔材中的Al完全反应完,TiAl箔叠层材料形成致密的Ti/TiAl3板材,合金致密基本无孔洞。再通过1200 ℃,36 h的高温退火,Ti与TiAl3在高温下继续反应,形成γ-TiAl、α-Ti3Al相。高温退火后的钼纤维与基体合金发生了扩散反应,形成了扩散区域,此区域内主要相组成为TiMo、AlMo3,钼纤维与基体合金通过扩散紧密结合在一起,界面未发现孔洞和因应力形成的裂纹。相比于未添加钼纤维的合金,添加10vol%钼纤维的复合材料抗弯性能有明显的提高,钼纤维在合金中起到了强韧化作用。  相似文献   

8.
粉末冶金TiAl合金排气门的研制   总被引:3,自引:0,他引:3  
利用元素粉末冶金方法制备了TiAl合金排气阀。为提高排气门杆部的致密度、均匀度 ,设计了特有的径向热压工艺 ,并从理论上分析了与该工艺相关的压坯密度、致密化和应力变化规律。制备出高径比为 10 .7,密度为 3.79g/cm3 的粉末冶金TiAl合金汽车发动机排气门  相似文献   

9.
一种高性能TiAl金属间化合物   总被引:1,自引:0,他引:1  
研究了一种高NbTiAl基合金两种组织状态下的热压缩性能及高温抗氧化性能。结果表明 ,片层组织合金比双态组织合金具有较高的高温抗压强度和屈服强度 ,而塑性较差。Nb的加入有效地提高了TiAl合金的抗氧化性  相似文献   

10.
微量C,B对高铌TiAl合金显微组织与力学性能的影响   总被引:3,自引:1,他引:3  
采用光学显微镜(OM)、扫描电镜(SEM)、透射电镜(TEM)等设备,以及拉伸和蠕变试验系统研究微量间隙元素C,B对高铌TiAl合金显微组织与力学性能的影响。微量B元素对高铌TiAl合金没有明显的强化作用,但是微量B元素在合金中以条状或点状的TiB2存在,TiB2细化了高铌TiAl合金原始片层团晶粒,对改善高铌TiAl合金片层组织的室温塑性有利。加微量C元素的高铌TiAl合金在长时间的蠕变过程中,大量Ti3AlC沉淀相的析出提高了高铌TiAl合金全片层组织蠕变抗力。  相似文献   

11.
1.IntroductionThereis,duringthisdecade,muchinterestinthedevelopmentofac--TiAlalloys.Par'ticularly,ac--TiAlalloysarewidelyacceptedaspotentialstructuralmaterialsofaerospaceandaircraftengine.Intermediateexperimentsofsomeaerospacecomponelltshavebeenmade,andac--TiAlvalveshavealsobeenusedinautomobilesll].Thiscompoundpossessesanattractivecombinationofproperties,includinghighmeltingtemperature,lowdensityshighmodulus,andgoodoxidationandcreepresistance.Longrangeorderingofintermetalliccompoundsresults…  相似文献   

12.
A TiAl alloy was fabricated by high-energy ball milling and subsequent reactive sintering from the mixed powders of Ti and Al. High-energy ball milling produced a kind of particular composite powders with an extremely fine altemative Ti and Al lamella structure. The composite powders not only possessed good consolidation and densification characteristics, but also resulted in the augment of nucleation rate of α and γ titanium aluminides during solid-phase reactive sintering After a series of processing, pressing, degassing, extrusion, and sintering, the resultant TiAl alloy presented high relative density and refined grain sizes of (α2 + γ) lamella and γ phases. The compressive yield strength of the sintered TiAl reached 600 MPa at 800℃.  相似文献   

13.
Titanium aluminides based on the ordered face-centered tetragonal γTiAI phase possess attractive properties, such as low density, high melting point, good elevated temperature strength, modulus retention, and oxidation resistance, making these alloys potential high-temperature structural materials. These alloys can be processed by both ingot metallurgy and powder metallurgy routes. In the present study, three variations of the powder metallurgy route were studied to process a Ti-44Al-12Nb (at. %) alloy: (a) cold pressing followed by reaction sintering (CPprocess); (b) cold pressing, vacuum hot pressing, and then sintering (HP process); and (c) arc melting, hydride-dehydride process to make the alloy powder, cold isostatic pressing, and then sintering (AM process). Microstructural and phase relations were studied by x-ray diffraction (XRD) analysis, optical microscopy, scanning electron microscopy with an energy-dispersive spectrometer (SEM-EDS), and electron probe microanalysis (EPMA). The phases identified were Ti3AI and TiAl; an additional Nb2AI phase was observed in the HPsample. The microstructures of CPand HP processed samples are porous and chemically inhomogeneous whereas the AM processed sample revealed fine equiaxed microstructure. This refinement of the microstructure is attributed to the fine, homogeneous powder produced by the hydride-dehydride process and the high compaction pressures.  相似文献   

14.
A new beta-gamma TiAl–2Nb–2Mo alloy was synthesized using powder metallurgy process and coated with NiCrAlY by air plasma spray technique. The cyclic oxidation behaviour of the coated beta-gamma alloy was investigated at 1,000?°C for up to 800 cycles. During cyclic oxidation testing, titanium nitride layer was found to form at the interface between NiCrAlY and TiAl–2Nb–2Mo and the thickness of the titanium nitride layer increased with oxidation cycles. Additionally, outward diffusion of Ti from the beta-gamma substrate caused the formation of titanium oxides on the coating surface after 630 cycles. Inward diffusion of Ni from NiCrAlY led to the formation of an inner diffusion zone containing NiAlTi and mixture of NiAlTi?+?TiAl. Due to the spallation of coating scales on the circumferential surface of the button specimens, weight loss was observed after 120 cycles; however, NiCrAlY coating on both top and bottom surfaces of the specimens remained in contact with the substrate for up to 800 cycles. Due to the inward and outward diffusion of various elements, one third of the NiCrAlY coating was consumed after 800 cycles, which suggests the need for diffusion barrier coating at the interface between the NiCrAlY coating and the TiAl–2Nb–2Mo alloy.  相似文献   

15.
采用机械合金化与热压烧结工艺制备了添加合金元素V和Fe的Laves相增强的Nb基复合材料。研究了添加质量分数4%V和Fe的Nb/NbCr2-4.0V和Nb/NbCr2-4.0Fe配比成分的元素粉,经MA20h后在1250℃热压30min所获得的Nb/NbCr2合金的组织和性能。结果表明:在热压过程中原位合成出细小弥散分布的三元Laves相Nb(Cr,V)2和Nb(Cr,Fe)2,并且V和Fe原子只占据Laves相中的Cr原子位置。制备出的Laves相增强Nb基合金接近全致密,组织细小均匀,晶粒尺寸小于500nm。Nb/NbCr2-4.0V和Nb/NbCr2-4.0Fe合金的断裂韧性分别达到5.3和6.3MPa·m1/2,其中Nb/NbCr2-4.0Fe合金不仅抗压强度达到2256MPa,其屈服强度和塑性应变也分别达到2094MPa和6.03%。  相似文献   

16.
Jung  Hwan Gyo  Kim  Kyoo Young 《Oxidation of Metals》2002,58(1-2):197-216
The effects of ternary elements added to TiAl on the coating layer formed by the pack-aluminizing process was studied with respect to oxidation resistance and mechanical properties. All the TiAl specimens, with various amounts of Nb, Cr, Fe, and V, were pack aluminized under identical conditions using a high-activity process. Among the ternary alloying elements tested, Nb showed the best property of the TiAl3 coating layer formed on the surface and, consequently, the best oxidation resistance. The TiAl3 coating layer becomes thicker and has a finer grain size as the content of Nb or Cr is increased. Microhardness tests revealed that the addition of Nb or Cr improved the toughness of the coating layer and thus improved the cracking resistance. Cyclic oxidation tests showed that the TiAl3 coating layer formed on the TiAl alloy has better oxidation resistance with increasing Nb content. The ductility and oxidation resistance of the TiAl3 coating layers improved with Nb addition, which contributes to the grain refinement of TiAl3. The Nb present in the TiAl3 coating layer inhibits grain growth by the solute-drag effect and retards inward diffusion of Al to the TiAl matrix by forming (Nb, Ti)Al3 precipitates during high-temperature oxidation.  相似文献   

17.
反应合成Ti_3Al/TiC+Al_2O_3复合材料烧结过程热力学分析   总被引:1,自引:0,他引:1  
将高能球磨后的Ti-Al粉末和TiC,Al2O3粉末混合进行热压烧结,在烧结的过程中反应生成金属间化合物为增强相的复合材料。通过对粉料的X射线衍射分析、热分析(DSC)和烧结体的成分分析表明,最终的金属间化合物只有Ti3Al而没有其它金属间化合物相。通过热力学计算,分析了反应烧结过程并发现在低温由固相间原子扩散控制生成TiAl3,TiAl,Ti3Al的渐进过程,和在高温下金属间化合物的合成机理,而且增强相和基体界面间处于稳定状态。  相似文献   

18.
THERMALSTABILITYOFTHEMECHANICALLYALLOYEDAl-10TiNANOCRYSTALLINEALLOYDURINGCONSOLIDATIONPROCESSLiangGuoxian;LiZhichao;WangErde(...  相似文献   

19.
1 INTRODUCTIONInthedesignandmanufactureofaviationindus try ,differentpartsoftheaircraftengineshouldmeetthedifferentrequirementsonoperatingtemperatureandserviceperformance .Thesoundbondofdissimi laralloysisthekeytechniquefordevelopingnovele quipmentsandimprovingtheirintegralperformance .Lowdensityandexcellenthigh temperaturepropertiesofTiAlalloysmakethem promisinghigh temperaturestructuralmaterials .Successfuljoiningofthesematerialswillincreasetheirutilityinengineer ing[1,2 ] .Somejoinin…  相似文献   

20.
This study is devoted to plasma nitridation of a Ti-6Al-4V powder, and sintering of reaction products so-obtained.Ti-6Al-4V spherical particles (22-45 μm) were injected in a plasma jet using N2 as plasma gas and collected in two spots: in a cold area located far from the torch and in a hot area submitted to the plasma thermal effect. After plasma nitridation, particles of substoichiometric titanium nitride (TiN1−x) with no nitrogen gradient were obtained. The reduction of nitrogen concentration in plasma gas improved the massic output of gathered powders. These powders were not exclusively composed by TiN1−x, since titanium alloy often remained, and a secondary phase β-Ti containing vanadium and aluminium was always present inside the grains. The nitridation rate depended on the collected area. Titanium oxide (rutile) was detected in powders collected in the hot area.Titanium nitride powders in which no rutile was detected were hot pressed up to 1450 °C under flowing nitrogen. In this case, the densification rate did not overload 83% of theoretical value. This fact can be explained by the nitridation of both TiN1−x and titanium intermetallic phases during the heat treatment. In the case of inert atmosphere (argon), there was only the densification phenomenon which gave a density close to the theoretical value.This work has to be developed on the one hand to improve powder synthesis and its natural sintering, and on the other hand to approach hot pressing sintering mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号