首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
宏微复合平台常应用于大行程运动和高精度定位的场合。基于对宏微复合驱动技术的的分析及研究,提出了一种音圈电机与压电陶瓷复合驱动的宏微复合运动平台结构,其中微运动平台采用压电陶瓷驱动和弹簧预紧,具有结构简单、分辨率高、刚度高和响应速度快等优点。针对微运动平台的主动控制问题,考虑压电陶瓷驱动器驱动电路以及滑块与摩擦复合作用的影响,建立微运动平台动态模型。通过微运动平台动态特性的实验研究,分析滑块与摩擦复合作用对微运动平台平稳性的影响。结果表明,该模型可快速缩短平台到达稳定的时间,满足平台精密定位要求。  相似文献   

2.
崔晶  王迪凡 《光学精密工程》2015,23(4):1081-1087
针对音圈电机驱动的X-Y定位平台中稳态误差导致的系统定位精度较低的问题,提出了基于敏感函数逆的前馈补偿控制方法。首先,采用频域辨识方法建立了系统模型,基于终值定理推导出系统扰动和稳态误差的关系,并由此设计了敏感函数的逆模型来补偿扰动对稳态误差的影响,从而提高系统精密定位性能。最后,在搭建的音圈电机驱动X-Y定位平台上进行了不同运动行程的实验研究。实验结果表明:在行程为10μm,最大加速度为6mm/s2的微定位运动条件下,补偿后的定位误差可由2μm降低到0.2μm;在行程为10mm,最大加速度为6m/s2的宏定位运动条件下,定位误差可由2μm降低到0.4μm。实验结果验证了本方法的有效性,为后续高精密伺服系统的研制提供了重要参考和设计依据。  相似文献   

3.
为实现定位系统在大行程中高精度定位,设计了一种宏微双级驱动精密定位平台。采用金属波纹管直接驱动宏动平台,实现了系统大行程进给。安装在宏动平台上的音圈电机驱动微动平台,补偿宏动平台产生的误差并实现系统的高精度定位。采用双光栅检测方案,增量式光栅反馈宏动平台的位置信号,绝对式高精度光栅反馈微动平台的位置信号,实现二级精密驱动定位系统的全闭环控制设计。分别对宏动平台和微动平台建立数学模型,提出宏动平台带前馈的PID闭环控制和微动平台的神经网络PID复合控制方案。实验结果表明:该定位系统能满足大行程高精度的定位要求,在50mm的行程中重复定位精度能达到0.6μm。  相似文献   

4.
针对集成电路制造、超精密检测仪器及微机电系统加工制造等领域对大行程、多自由度、高速及高精度运动平台日益迫切的需求,提出一种新型大行程三自由度宏微运动平台。该平台采用直线电动机与压电陶瓷进行宏微双重驱动,采用直线光栅与平面光栅实现双闭环位置反馈与控制。基于该平台结构设计,确定其位置正解方程与位置逆解方程,并列举算例验证。基于ADAMS软件对平台进行运动仿真,分析不同驱动类型与驱动参数对运动平台位移、速度及加速度的影响。最后,针对宏微双重驱动传动的精度问题进行实验研究。结果表明,该平台运动学方程正确有效,具有较好的动态响应性与运动规划性,且该种驱动传动形式满足大行程、高速及高精度的性能要求。  相似文献   

5.
李国  王波  董申  王石磊 《光学精密工程》2009,17(6):1426-1430
提出了一种宏/微双驱动微进给机构的设计与控制方法。介绍了宏/微双驱动微位移机构的结构设计,将宏动(大行程)和微动(高分辨率)两者串联以获得理想的运动性能。该机构用步进电机作为宏动的驱动装置以获得大行程和高响应速度,用压电陶瓷微位移器作为精密运动以提高运动分辨率和运动精度。设计了该机构的控制系统,用一个基于模型的开关控制器对微位移装置进行控制,并设计专门的运动分配模块对宏/微运动进行协调控制。最后,分别控制宏动和微动装置对该系统进行了实验,并用激光干涉仪检测。检测结果表明,宏动装置的行程为90 mm,运动分辨率为0.3 μm;压电陶瓷微动装置的行程为40 μm,定位精度为0.9 μm。理论分析和实验结果均表明了控制策略的有效性。  相似文献   

6.
文章首先分析了目前直线音圈电机在微动运动台定位控制系统中应用的优缺点,在此基础上设计了一种EI磁阻电机和直线音圈电机的混合控制系统。该控制系统中选择EI磁阻电机作为前馈控制电机,音圈电机作为反馈控制电机。仿真实验验证了EI磁阻电机的小电流大推力特性,实现相同的加速度,EI磁阻电机所需电流仅是直线音圈电机的1/3左右。试验验证了该控制系统,与单使用音圈电机控制系统相比,伺服性能明显改善。此控制系统,对于实现下一代微动运动台的高加速高精度定位有很高的参考价值。  相似文献   

7.
一种宏微双重驱动精密定位机构的建模与控制   总被引:28,自引:18,他引:10  
提出一种宏微双重驱动精密定位机构,采用高性能直线电机直接驱动宏动平台,实现系统大行程微米级精度定位;安装在宏动平台上的压电陶瓷驱动微动平台,实现纳米级的分辨率和定位精度,以高频响动态补偿系统的定位误差;采用精密光栅尺反馈微动平台输出端的位置信号,实现定位机构的全闭环反馈控制。在分别建立宏动、微动、宏微机构模型的基础上,提出复合型宏动控制和模糊自校正PID微动控制的宏微控制策略。实验研究表明:系统的动态和稳态性能良好,该定位机构的最大工作行程100 mm,稳定时间小于40 ms,重复定位精度10 nm。  相似文献   

8.
为获得高精度大行程快速刀具伺服(Long-range fast tool servo,LFTS)系统,以柔性铰链为运动导向机构,提出一种基于洛伦兹电磁力与压电混合串联驱动的LFTS系统构成策略。对于该混合驱动,基于洛伦兹力的音圈电机用于实现大行程运动,而高频响压电则对其进行高精度动态补偿。针对压电驱动,为提高系统输出刚度及寄生运动抑制能力,提出一种改进的具有完全对称构型的桥式柔性放大机构。两种驱动的垂直布置构型及压电驱动的完全对称性有效降低了驱动间动力学耦合。基于试凑法和智能优化算法,结合机-电-磁理论模型分别优化获得了音圈电机及压电驱动系统关键参数,并采用有限元仿真验证了设计的正确性。为获得高精度运动跟踪,提出音圈电机开环逆动力学控制及压电驱动闭环补偿LFTS整体运动误差的控制策略,借助所辨识系统动力学模型最优设计了相应控制器。最终,通过试验样机开闭环性能测试,验证了系统设计与控制策略的有效性。  相似文献   

9.
大行程、高精度,同时易于小型化的移动机构是先进制造业等领域要解决的关键问题之一,综述了现有宏/微双重驱动机构和直线超声电机的研究进展和存在问题,提出了一种宏微双重驱动新型直线压电电机,使其既能与超声电机一样,直接驱动、响应快、不受磁场干扰实现宏驱动;又能与微驱动一样,精密定位,实现微驱动,并把宏微运动结合起来,在一个电机上同时实现宏微驱动,通过有限元分析软件,计算复合振子的振动模态和静态变形,分析了宏微驱动原理,给出了宏微驱动新型直线电机驱动电源的设计方案。  相似文献   

10.
针对目前单一的驱动方式日益不能满足越来越多的微操作的要求;提出了利用步进电机和压电驱动器组成宏/微双驱动的微操作平台.步进电机实现大行程移动和定位,压电驱动器进行高精度定位误差补偿.同时为了解决宏/微双驱动两部分的协调控制问题,提出了利用全局机器视觉的协调控制方法,将末端执行器与目标点的距离作为控制阈值;如果当前距离大于设定的控制阈值,则启动宏动台进行驱动定位;否则启动压电驱动器进行定位误差补偿.试验结果表明:系统的定位速度快,定位精度为1μm,稳定定位时间小于40ms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号