首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
机器人研磨抛光工艺研究与实现   总被引:2,自引:0,他引:2  
机器人研磨抛光工艺研究建立在大量机器人磨抛试验的基础上.本文针对加工对象--有机玻璃,在满足被加工工件质量的前提下,确定了机器人研磨抛光加工时磨片的合理使用顺序、规划加工路径和安排正交试验,以获得机器人磨抛加工的最优工艺参数组合,并制定机器人磨抛的加工策略.最后通过机器人研磨抛光加工实例,进一步验证了机器人的研磨抛光工艺知识有其合理性.  相似文献   

2.
研究以KUKA 30-3机器人为实验平台,基于力控制技术研究自由曲面有机玻璃的机器人自动化研抛加工工艺。理论研究分析可知,研抛工具与工件之间的接触压力是影响有机玻璃研抛表面质量的重要因素,而基于力控制的机器人能够模仿工人的研抛操作,使研抛工具与工件表面之间保持恒定的接触压力,有效地保证了研抛质量。研究以有机玻璃为实验对象,通过实验对比了加力控制与不加力控制下,不同的研抛接触压力对加工表面质量的影响。实验结果表明,加入力控制技术的机器人研抛加工不仅能够提高研抛表面质量(表面粗糙度和表面三维形貌),同时还可以提高加工效率,保证产品质量的一致性。  相似文献   

3.
磁流变抛光消除磨削亚表面损伤层工艺研究   总被引:1,自引:1,他引:1  
针对传统光学制造技术对亚表面控制局限性和磁流变抛光的特点,提出用磁流变抛光替代研磨工序直接衔接磨削工序的新工艺流程。采用自研的磁流变抛光机床KDMRF−1000和水基磁流变抛光液KDMRW-2进行了磁流变抛光去除磨削亚表面损伤层的实验研究。直径为100mm的K9材料平面玻璃,经过156min的磁流变粗抛,去除50um深度的亚表面损伤层,表面粗糙度Ra值提升至0.926nm,经过17.5min磁流变精抛,去除了200nm深度的材料,并消除磁流变粗抛产生的抛光纹路,表面粗糙度Ra值提升至0.575nm。应用磁流变抛光可以高效消除磨削产生的亚表面损伤层。磁流变抛光替代研磨工序直接衔接磨削工序的新工艺流程可以实现近零亚表面损伤和纳米精度抛光两个工艺目标。  相似文献   

4.
机器人研磨抛光工艺研究   总被引:6,自引:0,他引:6  
以有机玻璃为研究对象,介绍了机器人研磨抛光工艺,讨论了研磨抛光参数优化设计方法,并进行了研磨抛光试验。试验结果表明,研磨抛光后的工件,能够达到产品外形和表面质量的要求,且提高了磨抛效率。  相似文献   

5.
针对传统光学加工技术难于精确测量和控制亚表面损伤的特点,提出用磁流变抛光替代研磨工序并直接衔接磨削的新工艺流程。采用自行研制的磁流变抛光机床KDMRF-1000和水基磁流变抛光液KDMRW-2进行了磁流变抛光去除磨削亚表面损伤层的实验研究。结果显示,直径为100mm的K9材料平面玻璃,经过156min的磁流变粗抛,去除了50μm深度的亚表面损伤层,表面粗糙度Ra值进一步提升至0.926nm,经过17.5min磁流变精抛,去除玻璃表面200nm厚的材料,并消除磁流变粗抛产生的抛光纹路,表面粗糙度Ra值提升至0.575nm。由此表明,应用磁流变抛光可以高效消除磨削产生的亚表面损伤层,提出的新工艺流程可以实现近零亚表面损伤和纳米级精度抛光两个工艺目标。  相似文献   

6.
碳化硅抛光加工中极易出现表面/亚表面损伤,使其应用受限。基于研抛加工中脆性材料去除机理,建立亚表面损伤深度(SSD)的理论模型。利用有限元仿真模拟了单颗粒抛光加工的过程,分析了不同研抛参数(抛光速度、抛光深度和磨粒顶角)对SSD的影响。结果表明,当加工深度大于脆性材料临界切削深度时,材料去除主要是脆性模式;SSD随着磨粒顶角以及抛光深度的增大而增大,随着抛光速度的增加而减小,但是抛光速度过高会不利于亚表面损伤的控制。由于抛光过程中运动学特性,抛光速度对SSD的影响大于抛光深度和磨粒顶角。  相似文献   

7.
碳化硅抛光加工中极易出现表面/亚表面损伤,使其应用受限。基于研抛加工中脆性材料去除机理,建立亚表面损伤深度(SSD)的理论模型。利用有限元仿真模拟了单颗粒抛光加工的过程,分析了不同研抛参数(抛光速度、抛光深度和磨粒顶角)对SSD的影响。结果表明,当加工深度大于脆性材料临界切削深度时,材料去除主要是脆性模式;SSD随着磨粒顶角以及抛光深度的增大而增大,随着抛光速度的增加而减小,但是抛光速度过高会不利于亚表面损伤的控制。由于抛光过程中运动学特性,抛光速度对SSD的影响大于抛光深度和磨粒顶角。  相似文献   

8.
采用工业机器人进行大口径光学元件的研抛过程中,机器人自身定位误差会导致研抛压力产生波动,进而影响去除函数稳定性,为此提出了一种机器人恒压球形公自转磨头抛光方法,并对其结构、工作原理、机器人定位特性以及研抛压力输出特性开展了研究。首先,基于Preston理论构建了材料去除模型,对去除函数形状进行了分析,对所设计抛光磨头的机械结构与工作原理进行了介绍。然后,对机器人定位误差以及磨头输出力响应性与稳定性进行了测量,验证了所提方法能够较好地适应机器人研抛压力波动而做出的力响应控制。最后,进行了定点抛光以及粗、精磨抛加工实验。实验结果表明:利用所提方法去除函数的稳定性强,通过10个周期的粗、精抛加工,面形收敛率分别为9095%、7261%,可获得较高的加工精度与面形质量。  相似文献   

9.
针对聚晶金刚石复合片精加工后需达到镜面级表面的指标要求,基于正交试验法优化聚晶金刚石复合片精加工工艺参数,采用极差分析法处理试验数据,并绘制试验指标与各试验因素间的关系曲线图,得出了各因素对表面粗糙度的影响规律,并以此为基础优化工艺参数,进行聚晶金刚石复合片镜面加工工艺优化研究。研究表明:抛光盘转速和研抛时间对工件表面粗糙度影响较大,各因素对表面粗糙度的影响程度按从大到小的顺序依次为:抛光盘转速、研抛时间、研抛压力和抛光液磨料粒度。采用优化后的最优工艺参数组合进行加工试验,当研抛压力为90 kPa、抛光盘转速为1 200 r/min、抛光液磨料粒度为1μm、研抛时间为30 min时,得到了表面粗糙度Ra为0.019μm的质量表面,达到了聚晶金刚石复合片镜面加工(Ra0.02μm)的效果。  相似文献   

10.
针对用传统车削或研磨抛光方法加工大尺寸非球面热压硫化锌透镜存在的不足,采用金刚石砂轮磨削加工方法对热压硫化锌材料进行了加工实验。通过压痕、单颗粒金刚石刻划和磨削正交实验,研究了该方法在磨削加工过程中的塑性域去除机理及其亚表面损伤情况,并优化了超精密磨削加工工艺参数。压痕实验发现热压硫化锌材料在载荷作用下易于出现径向裂纹和微裂纹,其断裂韧性为2.643842MPa/m1/2,临界切削深度为1.808μm。单颗粒金刚石刻划实验结果表明,热压硫化锌材料在较小的切削深度下可以实现塑性域去除,但在机械去除过程中易出现多种形式的亚表层损伤。磨削实验结果表明,磨削深度是影响表面光洁度的主要因素,随着磨削深度的增大表面光洁度降低,最佳表面粗糙度为7.6nm。工作台进给速度是影响面形精度的主要因素,且平面磨削的面形精度PV值为0.185~0.395μm。研究结果表明,磨削加工热压硫化锌材料可以获得纳米级表面粗糙度。  相似文献   

11.
"叉指式微加速度计"的研制,需要使用高浓度硼扩散硅片,而硅片经过高浓度硼扩散后,硅片双面生长了一层硼硅玻璃,很难将其去除,不能在高浓度硼扩散层上制作更好的"叉指式微加速度计"结构.针对上述问题,在CMP研磨抛光工艺中,针对上述问题,在CMP研磨抛光工艺中,选择合适的研磨料和抛光料以及研磨盘和抛光盘,通过对浆料浓度、流量大小、抛光温度进行改进,优化研磨抛光工艺流程及工艺参数,以完成高浓度硼扩散硅片的表面平坦化.  相似文献   

12.
基于最大熵原理的平面研抛工艺参数优化   总被引:2,自引:0,他引:2  
提高光学零件研抛加工精度的关键是优选工艺参数。对此提出一种基于最大熵原理的平面研抛工艺参数优化方法。建立了工件研抛信息熵的数学表达式并给出了相关的物理解释,并对定偏心平面研抛工艺参数优选进行了数值模拟计算。研究结果表明,在定偏心平面研抛中,选择工件与研抛盘同方向等速转动可以使工件表面材料去除均匀,选择较大的偏心率可以提高加工效率,同时应实时修整研抛盘以减小研抛盘磨损对工件加工精度的影响。  相似文献   

13.
介绍了设计的止推气浮轴承的结构和工作原理,针对该轴承的工作表面要求达到镜面效果的难题,设计了止推气浮轴承工作表面的研磨与抛光工艺,对研抛过程中的研磨盘转速、研抛压力、磨料种类及粒度等工艺参数进行了单因素试验分析,得到了一组适合止推气浮轴承工作表面研磨抛光的优化组合参数。  相似文献   

14.
通过工艺实验研究超精密镜面研抛技术在铝合金手机外壳精密超精密镜面加工中的应用,获得表面粗糙度为R a0.026μm的铝合金加工表面。通过优化研抛压力、研抛盘转速、研磨垫质地和硬度、磨料磨粒大小等参数的匹配组合,能够有效提高加工效率、改善加工表面质量,减小表面粗糙度值。  相似文献   

15.
碳化硅在研抛加工过程中极易产生表面损伤,从而影响工件表面质量和疲劳性能。基于硬脆材料的研抛去除机理,建立有限元仿真模型,模拟单颗粒研抛过程,分析了工件材料的去除过程,以及不同工艺参数对表面应力分布和表面去除形貌的影响。通过计算机控制精密研抛工艺对碳化硅进行研抛试验,进一步分析了各工艺参数下表面形貌的变化,结果表明,较小的主轴转速、较大的磨粒尺寸和研抛深度对工件表面破碎损伤严重,而进给速度对工件表面去除效果的影响不明显,不同工艺参数对表面损伤影响变化趋势与模拟分析结果吻合较好。研究结果对于选择合理的研抛工艺参数以获得良好的表面质量具有重要意义。  相似文献   

16.
硬质合金的超精密加工技术探讨   总被引:1,自引:0,他引:1  
硬质合金的加工原来主要采用生产周期长、产品成本高的研磨、抛光技术.但近年来,随着超精密磨削技术的进步,使得磨削表面质量等同甚至优于研抛表面.并且加工效率大幅度提高.若能以铣削代粗、精磨,并作为超精磨、超精研的前道工序,则会大大降低成本,提高生产率.  相似文献   

17.
针对聚晶金刚石复合片(PDC)在加工过程中硬度高、精度低等难题,在半精磨阶段采用ELID磨削技术对其进行加工试验以研究其去除机理及存在的缺陷。为解决ELID磨削PDC存在的缺陷,在精加工阶段对PDC进行了抛光试验。通过采用二次通用旋转组合方法对影响PDC表面粗糙度的各工艺参数进行抛光试验设计。首先利用DPS数据处理系统软件对试验结果进行分析得到PDC表面粗糙度二次回归数学模型及各工艺参数对PDC表面粗糙度的单因素和交互作用影响规律。然后利用lingo软件优化得到PDC抛光最佳工艺参数为抛光压力80 kPa,抛光盘转速1 200r/min,抛光液磨粒粒度2μm,抛光时间45 min,并在此最佳工艺参数下抛光PDC获得表面粗糙度为15 nm的已加工表面。  相似文献   

18.
硬盘巨磁电阻磁头的超精密抛光工艺   总被引:1,自引:0,他引:1  
申儒林 《中国机械工程》2007,18(18):2241-2245
硬盘巨磁电阻磁头的抛光可分为自由磨粒抛光和纳米研磨,在自由磨粒抛光中,精确控制载荷和金刚石磨粒的粒径,可以避免脆性去除实现延性去除。通过控制抛光过程中的抛光盘表面粗糙度、金刚石粒径大小及粒径分布和载荷等进行滚动磨粒和滑动磨粒比例的调控,获得较好的磁头表面质量和较高的材料去除率。在自由磨粒抛光阶段,先采用铅磨盘抛光,然后用锡磨盘抛光,以纳米研磨作为最后一道抛光工序对磁头表面进行研磨,获得了亚纳米级粗糙度的磁头表面。用两种工艺制作的纳米研磨盘进行加工,分别获得了0.37nm和0.8nm的磁头表面粗糙度,去除率分别为5.3 nm/min和3.9nm/min。  相似文献   

19.
谭刚  吴嘉丽 《机电工程技术》2010,39(10):60-61,79
“叉指式微加速度计”的研制,需要使用高浓度硼扩散硅片,而硅片经过高浓度硼扩散后,硅片双面生长了一层硼硅玻璃,采用原有CMP工艺很难将其去除.不能在高浓度硼扩散层上制作更好的“叉指式微加速度计”结构。针对上述问题,在CMP研磨抛光工艺中,通过改进双面粘片工艺.选择合适的研磨料和抛光料以及研磨盘和抛光盘,系统地考察了压力、转速、抛光垫、浆料、温度等因素对硅晶圆平坦化速率的影响.优化研磨抛光工艺流程及工艺参数,获得表面无划道、无麻坑、无桔皮的高浓度硼扩散硅片。表面粗糙度20A,达到“叉指式微加速度计”工艺用片指标。  相似文献   

20.
工程陶瓷主轴沟道表面磨削加工的实验研究   总被引:1,自引:0,他引:1  
基于实验室自主设计研发的全陶瓷电主轴,利用曲线磨床对工程陶瓷主轴沟道进行磨削加工以及运用手工研磨的方法进行研磨。研究砂轮转速、工件转速、进给量、横向进给速度等磨削工艺参数对沟道表面粗糙度的影响,以及研磨工艺参数、磨料粒度、研磨时间、主轴转速对沟道表面轮廓度的影响。揭示了磨削参数与研磨参数对氧化锆陶瓷主轴沟道表面质量的影响,为硬脆材料高效的成型磨削加工提供参考依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号