首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
为了降低电动车高速行驶时转向失稳带来的危险,提出了四轮转向与差动驱动联合控制策略以提高电动车转向时的高速稳定性。考虑轮胎非线性特性对整车的影响,在MATLAB中建立了电动车四轮转向与差动驱动联合控制下的整车动力学模型。以电动车转向过程中的质心侧偏角与横摆角速度为控制目标,采用模糊控制策略协调四轮转向与差动驱动进行联合控制,从而调节电动车的后轮转角和驱动力分配,使其质心侧偏角和横摆角速度能够跟随理想模型。通过仿真分析得到了转向时电动车的质心侧偏角和横摆角速度的动态响应。结果表明:在四轮转向与差动驱动联合控制下,可以将电动车质心侧偏角与横摆角速度控制在接近理想状态,从而提高电动车在高速时的转向稳定性并加快车辆的侧向响应速度。  相似文献   

2.
以四轮转向汽车为研究对象,建立七自由度车辆模型、轮胎模型、理想跟踪模型;设计直接横摆力矩和四轮转向相结合的车辆稳定性控制策略。以跟踪理想的质心侧偏角和横摆角速度为控制目标,设计滑模控制器产生车辆转向所需的横摆力矩和后轮转角,按单侧制动的方法将产生的横摆力矩分配到车辆的四个车轮上,通过制动力矩的分配以及转向角的修正,使车辆转向行驶时的横摆角速度和质心侧偏角跟踪理想模型。针对七自由度模型,在Matlab/Simulink中与比例控制四轮转向进行阶跃输入和正弦输入两种工况下的时域仿真对比。仿真结果表明,基于直接横摆力矩和四轮转向相结合的的控制策略有效减小了质心侧偏角,横摆角速度对理想值有很好的跟踪,提高了车辆的操纵稳定性,同时验证了横摆力矩分配的有效性。  相似文献   

3.
考虑车辆在极限运动工况下转向时的横摆运动、侧向运动以及侧倾运动的影响,建立以质心侧偏角、横摆角速度、侧倾角和侧倾角速度为状态变量的三自由度线性车辆模型。为了实现车辆线传操纵(steer by wire),以车辆实际质心侧偏角和横摆角速度与理想模型的质心侧偏角和横摆角速度之间的误差作为控制器输入,建立滑模跟踪控制器。考虑到状态变量之一的质心侧偏角难以直接测量,设计了降维观测器以重构车辆状态。仿真结果表明,降维观测器跟踪性能良好,准确的重构了车辆状态;与不受控制的前轮转向车辆相比,所设计的控制系统使车辆的动态特性和操纵性能有效提高。  相似文献   

4.
根据电动轮式多轴汽车驱动力矩独立可控的特点,采用ADAMS/View建立五轴全轮驱动汽车的30自由度动力学模型,选择横摆角速度和质心侧偏角作为控制变量,基于PID控制算法,采用Matlab/Simulink建立整车双目标优化控制策略,控制内、外侧车轮的驱动力矩,实现整车操纵稳定性的最优。联合仿真结果表明,在进行角阶跃输入响应时,采用横摆角速度和质心侧偏角的联合控制策略,可在横摆角速度稳态值仅降低3%的情况下,使质心侧偏角稳态值降低14%,使汽车具有良好的轨迹跟踪性。  相似文献   

5.
以某型多轮独立电驱动车辆为研究对象,针对车辆稳定性问题,提出了基于横摆角速度和质心侧偏角联合控制的横摆力矩滑模控制方法.控制器采用分层控制结构,控制器上层基于滑模控制理论,首先分别独立控制质心侧偏角和横摆角速度,分别得出附加力矩目标值,而后加权求和得到附加横摆力矩目标值,其中加权函数能够动态反映车辆行驶状态;控制器下层...  相似文献   

6.
汽车的横摆加速度过大会引起过度转向和过多不足转向等危险工况。采用线性二自由度车辆模型计算目标横摆角速度和目标质心侧偏角,运用卡尔曼滤波理论实时估算汽车的质心侧偏角并结合横摆角速度传感器对车辆稳定状态进行监测,提出了基于横摆角速度和质心侧偏角的ESP控制方法,着重介绍了ESP逻辑判断准则,应用Matlab/Simulink软件实现相应的电子稳定控制策略,同时利用AMESim软件中的15自由度整车模型建立AMESim-Simulink联合仿真模型,仿真结果验证了所提出的质心侧偏角估算的可行性及稳定性控制策略的有效性。  相似文献   

7.
针对四轮独立驱动电动车主动转向与横摆力矩集成控制问题,基于最优控制理论进行了研究。确定了整车集成控制结构,应用最优控制理论设计了集成控制器,利用四轮独立驱动电动车四轮驱动力矩独立可控的优势,采用规则分配方法设计了驱动力分配器。集成控制器根据实际横摆角速度和期望横摆角速度之差、实际质心侧偏角和期望质心侧偏角之差输出保证汽车稳定行驶所需的附加方向盘转角和附加横摆力矩值,附加方向盘转角直接作用到方向盘上,附加横摆力矩通过驱动力分配器分配实现。选择典型工况,采用驾驶模拟器硬件在环试验台对所研究的控制方法进行实验验证。验证结果表明,主动转向与横摆力矩集成控制提高了汽车行驶稳定性。  相似文献   

8.
提出直接横摆力矩与四轮转向集成的控制方案。建立了四轮转向半挂汽车列车的四自由度非线性动力学模型,以零侧偏角为控制目标确定半挂汽车列车牵引车后轮转角,以牵引车横摆角速度为控制变量,基于模糊PID控制技术设计了直接横摆力矩模糊控制器。借助Matlab/Simulink软件,对该集成控制器的有效性进行了验证。仿真结果表明,高速大转向时,该四轮转向直接横摆力矩集成控制器能得到较好的输出响应,牵引车质心侧偏角、横摆角速度,半挂车横摆角速度及牵引车与半挂车的中心线夹角响应均能很快稳定,可显著提高半挂汽车列车的操纵稳定性。  相似文献   

9.
为了提高四轮转向汽车的操纵稳定性,提出了一种基于分数阶PID横摆角控制策略。通过控制汽车实际横摆角速度与理想横摆角速度差值,优化汽车操作稳定性相关评价指标。分析了汽车四轮转向系统的动力学特性,利用MATLAB/Simulink建立了基于分数阶PID横摆角控制系统。通过对该系统进行数值仿真,获得了汽车操作稳定性各评价指标的响应曲线,将其与其他控制策略下的相应曲线及前轮转向系统的相应曲线进行对比,结果表明:采用分数阶PID横摆角控制策略,四轮转向汽车的质心侧偏角基本为零,横摆角速度与前轮转向汽车的横摆角速度基本一致,其操纵稳定性得到了提高。  相似文献   

10.
针对电动汽车的高速行驶稳定性问题,对四轮独立制动/驱动、四轮独立转向电动汽车进行了研究。提出了一种轮胎力优化分配控制算法,提高极限工况下车辆稳定性。首先,根据驾驶员的转向、制动/驱动输入,基于理想二自由度车辆模型算出横摆角速度、质心侧偏角的目标值,然后比较目标值与车辆实际值得出偏差,再根据目标值与实际值的偏差采用滑模控制计算出了所需的总横摆力矩、侧向力、纵向力。最后基于八自由度车辆模型,通过最优分配控制算法,计算出了每个车轮上需要施加的纵向力与侧向力。利用Matlab/Sinmulink与车辆动力学软件CarSim联合仿真验证了基于车辆稳定性的轮胎力优化分配效果。仿真结果表明,提出的轮胎力优化分配算法在高速急转向工况下能够使车辆保持理想的横摆角速度和质心侧偏角,提高了极限工况下车辆稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号