首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper solves the problem of reduced-order H filtering for singular systems. The purpose is to design linear filters with a specified order lower than the given system such that the filtering error dynamic system is regular, impulse-free (or causal), stable, and satisfies a prescribed H performance level. One major contribution of the present work is that necessary and sufficient conditions for the solvability of this problem are obtained for both continuous and discrete singular systems. These conditions are characterized in terms of linear matrix inequalities (LMIs) and a coupling non-convex rank constraint. Moreover, an explicit parametrization of all desired reduced-order filters is presented when these inequalities are feasible. In particular, when a static or zeroth-order H filter is desired, it is shown that the H filtering problem reduces to a convex LMI problem. All these results are expressed in terms of the original system matrices without decomposition, which makes the design procedure simple and directly. Last but not least, the results have generalized previous works on H filtering for state-space systems. An illustrative example is given to demonstrate the effectiveness of the proposed approach.  相似文献   

2.
A parameter dependent approach for designing static output-feedback controller for linear time-invariant systems with state-multiplicative noise is introduced which achieves a minimum bound on either the stochastic H2 or the H performance levels. A solution is obtained also for the case where, in addition to the stochastic parameters, the system matrices reside in a given polytope. In this case, a parameter dependent Lyapunov function is described which enables the derivation of the required constant feedback gain via a solution of a set of linear matrix inequalities that correspond to the vertices of the uncertainty polytope.The stochastic parameters appear in both the dynamics and the input matrices of the state space model of the system. The problems are solved using the expected value of the standard performance indices over the stochastic parameters. The theory developed is demonstrated by a simple example.  相似文献   

3.
This paper considers robust stochastic stability, stabilization and H control problems for a class of jump linear systems with time delays. By using some zero equations, neither model transformation nor bounding for cross terms is required to obtain the delay-dependent results, which are given in terms of linear matrix inequalities (LMIs). Maximum sizes of time delays are also studied for system stability. Furthermore, solvability conditions and corresponding H control laws are given which provide robust stabilization with a prescribed H disturbance attenuation level. Numerical examples show that the proposed methods are much less conservative than existing results.  相似文献   

4.
control for fast sampling discrete-time singularly perturbed systems   总被引:1,自引:0,他引:1  
Jiuxiang  Guang-Hong   《Automatica》2008,44(5):1385-1393
This paper is concerned with the H control problem via state feedback for fast sampling discrete-time singularly perturbed systems. A new H controller design method is given in terms of solutions to linear matrix inequalities (LMIs), which eliminates the regularity restrictions attached to the Riccati-based solution. A method for evaluating the upper bound of singular perturbation parameter with meeting a prescribed H performance bound requirement is also given. Furthermore, the results are extended to robust controller design for fast sampling discrete-time singularly perturbed systems with polytopic uncertainties. Numerical examples are given to illustrate the validity of the proposed methods.  相似文献   

5.
Zidong  Yurong  Xiaohui 《Automatica》2008,44(5):1268-1277
In this paper, we deal with the robust H filtering problem for a class of uncertain nonlinear time-delay stochastic systems. The system under consideration contains parameter uncertainties, Itô-type stochastic disturbances, time-varying delays, as well as sector-bounded nonlinearities. We aim at designing a full-order filter such that, for all admissible uncertainties, nonlinearities and time delays, the dynamics of the filtering error is guaranteed to be robustly asymptotically stable in the mean square, while achieving the prescribed H disturbance rejection attenuation level. By using the Lyapunov stability theory and Itô’s differential rule, sufficient conditions are first established to ensure the existence of the desired filters, which are expressed in the form of a linear matrix inequality (LMI). Then, the explicit expression of the desired filter gains is also characterized. Finally, a numerical example is exploited to show the usefulness of the results derived.  相似文献   

6.
In this paper, H control for a class of linear time invariant systems with infinitely many unstable poles is studied. An example of such a plant is a high gain system with delayed feedback. We formulate the problem via a generalized plant which consists of a rational transfer matrix and the inverse of a scalar (possibly irrational) inner function. It is shown that the problem can be decomposed into a finite-dimensional H control problem and an additional rank condition.  相似文献   

7.
Stability and L2 (l2)-gain of linear (continuous-time and discrete-time) systems with uncertain bounded time-varying delays are analyzed under the assumption that the nominal delay values are not equal to zero. The delay derivatives (in the continuous-time) are not assumed to be less than q<1. An input–output approach is applied by introducing a new input–output model, which leads to effective frequency domain and time domain criteria. The new method significantly improves the existing results for delays with derivatives not greater than 1, which were treated in the past as fast-varying delays (without any constraints on the delay derivatives). New bounded real lemmas (BRLs) are derived for systems with state and objective vector delays and norm-bounded uncertainties. Numerical examples illustrate the efficiency of the new method.  相似文献   

8.
For two-dimensional (2-D) systems, information propagates in two independent directions. 2-D systems are known to have both system-theoretical and applications interest, and the so-called linear repetitive processes (LRPs) are a distinct class of 2-D discrete linear systems. This paper is concerned with the problem of L2L (energy to peak) control for uncertain differential LRPs, where the parameter uncertainties are assumed to be norm-bounded. For an unstable LRP, our attention is focused on the design of an L2L static state feedback controller and an L2L dynamic output feedback controller, both of which guarantee the corresponding closed-loop LRPs to be stable along the pass and have a prescribed L2L performance. Sufficient conditions for the existence of such L2L controllers are proposed in terms of linear matrix inequalities (LMIs). The desired L2L dynamic output feedback controller can be found by solving a convex optimization problem. A numerical example is provided to demonstrate the effectiveness of the proposed controller design procedures.  相似文献   

9.
Lixian   《Automatica》2009,45(11):2570-2576
This paper concerns the problem of H estimation for a class of Markov jump linear systems (MJLS) with time-varying transition probabilities (TPs) in discrete-time domain. The time-varying character of TPs is considered to be finite piecewise homogeneous and the variations in the finite set are considered to be of two types: arbitrary variation and stochastic variation, respectively. The latter means that the variation is subject to a higher-level transition probability matrix. The mode-dependent and variation-dependent H filter is designed such that the resulting closed-loop systems are stochastically stable and have a guaranteed H filtering error performance index. Using the idea in the recent studies of partially unknown TPs for the traditional MJLS with homogeneous TPs, a generalized framework covering the two kinds of variations is proposed. A numerical example is presented to illustrate the effectiveness and potential of the developed theoretical results.  相似文献   

10.
In this paper, the problem of designing observer for a class of uncertain neutral systems. The uncertainties are parametric and norm-bounded. Both robust observation and robust H observation methods are developed by using linear state-delayed observers. In case of robust observation, sufficient conditions are established for asymptotic stability of the system, which is independent of time delay. The results are then extended to robust H observation which renders the augmented system asymptotically stable independent of delay with a guaranteed performance measure. Furthermore, a memoryless state-estimate feedback is designed to stabilize the closed-loop neutral system. In all cases, the gain matrices are determined by linear matrix inequality approach. Two numerical examples are presented to illustrate the validity of the theoretical results.  相似文献   

11.
In this paper, stability, robust stabilization and H control of singular-impulsive systems are studied. Some new fundamental properties are derived for switched singular systems subject to impulse effects. Applying the Lyapunov function theory, several sufficient conditions are established for exponential stability, robust stabilization and H control of the corresponding singular-impulsive closed-loop systems. Some numerical examples are given to demonstrate the effectiveness of the proposed control and stabilization methods.  相似文献   

12.
Robert   《Automatica》2006,42(12):2151-2158
This paper presents a performance analysis of nonlinear periodically time-varying discrete controllers acting upon a linear time-invariant discrete plant. Time-invariant controllers are distinguished from strictly periodically time-varying controllers. For a given nonlinear periodic controller, a time-invariant controller is constructed. Necessary and sufficient conditions are given under which the time-invariant controller gives strictly better control performance than the time-invariant controller from which it was obtained, for the attenuation of lp exogenous disturbances and the robust stabilization of lp unstructured perturbations, for all p[1,∞].  相似文献   

13.
This paper presents a novel quadratic optimal neural fuzzy control for synchronization of uncertain chaotic systems via H approach. In the proposed algorithm, a self-constructing neural fuzzy network (SCNFN) is developed with both structure and parameter learning phases, so that the number of fuzzy rules and network parameters can be adaptively determined. Based on the SCNFN, an uncertainty observer is first introduced to watch compound system uncertainties. Subsequently, an optimal NFN-based controller is designed to overcome the effects of unstructured uncertainty and approximation error by integrating the NFN identifier, linear optimal control and H approach as a whole. The adaptive tuning laws of network parameters are derived in the sense of quadratic stability technique and Lyapunov synthesis approach to ensure the network convergence and H synchronization performance. The merits of the proposed control scheme are not only that the conservative estimation of NFN approximation error bound is avoided but also that a suitable-sized neural structure is found to sufficiently approximate the system uncertainties. Simulation results are provided to verify the effectiveness and robustness of the proposed control method.  相似文献   

14.
Jun  Gang  Sheng  Jian   《Automatica》2008,44(12):3093-3099
A novel optimal Finite Word Length (FWL) controller design is proposed in the framework of μ theory. A computationally tractable close-loop stability measure with FWL implementation considerations of the controller is derived based on the μ theory, and the optimal FWL controller realizations are obtained by solving the resulting optimal FWL realization problem using linear matrix inequality techniques.  相似文献   

15.
This article introduces a novel distributed controller approach for networked control systems (NCS) to achieve finite gain L2 stability independent of constant time delay. The proposed approach represents a generalization of the well-known scattering transformation which applies for passive systems only. The main results of this article are (a) a sufficient stability condition for general multi-input-multi-output (MIMO) input-feedforward-output-feedback-passive (IF-OFP) nonlinear systems and (b) a necessary and sufficient stability condition for linear time-invariant (LTI) single-input-single-output (SISO) systems. The performance advantages of the proposed approach are reduced sensitivity to time delay and improved steady state error compared to alternative known delay-independent small gain type approaches. Simulations validate the proposed approach.  相似文献   

16.
In the theory of linear H control, the strict bounded real lemma plays a critical role because it provides a connection between the stabilizing solutions to the H Riccati equations and the stability and disturbance attenuation of the closed-loop system. Nonlinear versions of the strict bounded real lemma are also important in nonlinear H control theory. In this paper, we investigate the extension of the linear strict bounded real lemma and its smooth nonlinear generalization to cases where the solutions of the associated nonlinear PDE are not necessarily differentiable.  相似文献   

17.
Catherine  Jonathan R.   《Automatica》2007,43(12):2047-2053
In this note, we give new stability tests which enable one to fully characterize the H-stability of systems with transfer function , where h>0 and p,q,r are real polynomials in the variable sμ for 0<μ<1.As an application of this, in the case r(s)=1 and degp=degq=1, families of H-stabilizing controllers are given and a complete parametrization of all H-stabilizing controllers is obtained when .  相似文献   

18.
This paper is concerned with the problems of robust H and H2 filtering for 2-dimensional (2-D) discrete-time linear systems described by a Fornasini-Marchesini second model with matrices that depend affinely on convex-bounded uncertain parameters. By a suitable transformation, the system is represented by an equivalent difference-algebraic representation. A parameter-dependent Lyapunov function approach is then proposed for the design of 2-D stationary discrete-time linear filters that ensure either a prescribed H performance or H2 performance for all admissible uncertain parameters. The filter designs are given in terms of linear matrix inequalities. Numerical examples illustrate the effectiveness of the proposed filter design methods.  相似文献   

19.
This paper considers design problems of robust gain-scheduled H and H2 filters for linear parameter-varying (LPV) systems whose state-space matrices are represented as parametrically affine matrices, using quadratically parameter-dependent Lyapunov functions, and proposes methods of filter design via parametrically affine linear matrix inequalities (LMIs). For robust filters, our design methods theoretically encompass those that use constant Lyapunov functions. Several numerical examples are included that demonstrate the effectiveness of gain-scheduled and robust filters using our proposed methods compared with robust filters using existing methods.  相似文献   

20.
In this paper, we introduce a new iterative method of a k-strictly pseudo-contractive mapping for some 0≤k<1 and prove that the sequence {xn} converges strongly to a fixed point of T, which solves a variational inequality related to the linear operator A. Our results have extended and improved the corresponding results of Y.J. Cho, S.M. Kang and X. Qin [Some results on k-strictly pseudo-contractive mappings in Hilbert spaces, Nonlinear Anal. 70 (2008) 1956–1964], and many others.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号