首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Die Ausgleichvorgänge durch Kreis- und Erdkapazitäten Bei den nachfolgenden Ausführungen handelt es sich um eine Fortsetzung des in Bd. 44 (1959) Heft 4 dieser Zeitschrift bereits erschienenen ersten Teiles Eine Theorie des Wechselstromkreises mit Lichtbogen.Bezeichnungen R 1 Ohmscher Widerstand von Trafo und Netzzuleitung - R 2 Ohmscher Widerstand des Lastkreises - R 3 Ohmscher Widerstand vorC 1 - R 4 Ohmscher Widerstand vorC 2 - R Kleinstmöglicher Widerstand der Verbindung zweier Stromkreise über ein Schaltgerät - Phasenwinkel der Spannung im Augenblick des Stromnulldurchganges bei metallisch geschlossenem Stromkreis - Phasenwinkel der Spannung im Augenblick des Stromnulldurchganges nach der Zündung bei Berücksichtigung vonL undR stattL undR - Phasenwinkel des Stromes im metallisch geschlossenen Stromkreis - Phasenwinkel des Stromes im metallisch geschlossenen Stromkreis vor der Zündung des Lichtbogens - 1 - 2 - Phasenwinkel der Ausgleichströme - tg - 1 - 2 - 2f (Kreisfrequenz beif=50Hz: =314) - 1 - 2 - z ges - z 4 - e b Lichtbogenspannung= (Die konstante induktive und ohmsche Komponente der Lichtbogenspannung ist bereits zu den StromkreiskonstantenL undR addiert) - u Spannungsabfall an einem lastseitigen Stromkreisglied Mit 5 Textabbildungen  相似文献   

2.
In this paper, a new position control method based on the reaching law control (RLC) approach is proposed for the robust position control of electrical drive systems. The main aim of this study is to investigate the robustness of the RLC approach under inertial-frictional variations and external disturbances and to address the application problems of the RLC approach for position control systems. New components are added to the controller in order to improve the robustness. The control method is applied to a vector-controlled induction motor drive system. It is shown in the paper that the practical constraints such as torque limitation, and the demand of high control performance, i.e., high bandwidth, result in undesirable overshoots. The performance of the control method is shown by simulation and experimental results.List of symbols X, X k Continuous and discrete-time state vectors - x 1, x 2 State variables (the shaft position and speed of the rotor) - , re Position and reference angles (rad) - Angular velocity (rad/s) - A,A n State variable matrix with true and nominal parameters - B,B n Control input matrix, with true and nominal parameters - u,u max Control signal, and its maximum value - A,B Uncertain parts of the state matrix and the control input matrix - Equivalent terms of A, B uncertainties referred to matching condition - C Gain vector of switching function - s k Switching function - q A constant used in the reaching law - A constant used in the reaching law - A constant used in the chattering reduction approach - T sampling period - J,J n True and nominal inertia coefficient (kg m2) - B,B n True and nominal friction coefficient (kg m2/s) - J,B The uncertain parts of the inertia and friction coefficients - T e Produced (electrical) torque (control signal) (Nm) - Load torque (Nm) - Equivalent term of A referred to matching condition and scalar component - Equivalent term of B referred to matching condition - All uncertainties and disturbances referred to matching condition - J0,B0 The variation ratios of the inertia and friction coefficients - G State variable matrix in discrete-time model - H Control input matrix in discrete-time model - Slope of the sliding line (surface) - a Mechanical time constant - v sd, v sq Stator voltages in d-q axis (V) - i sd, i sq Stator currents in d-q axis (A) - L s, L R Stator and rotor self inductances (H) - L m Mutual inductance (H) - Leakage factor - e, sl Stator and slip angular velocity (rad/s) - r Rotor time constant - P Number of poles  相似文献   

3.
Ohne ZusammenfassungVerzeichnis der Abkürzungen und Einheiten P x ,P z Komponenten desHertzschen Vektors Vm - l Strom im Dipol oder Kabel A - k p 2 =2 p 0j0 p Wellenzahl (p=0, 1, 2) 1/m2 - p = p +j p elektrodynamische Leitfähigkeit (p=0, 1, 2) S/m - Integrationsvariable J/m - Wurzelausdrücke in den Integralen 1/m - l·x'/ p häufiger Faktor vor den Integralen V · m2 - z, h, H; a; x, y, R, Längen m - elektrische Feldstärke V/m - magnetische Feldstärke A/m - p Index gemäß dem Raumteil A/m - S 0, 1 (),S 1,2() Zwei gleichart. Abk. in Gl. 3 (8, 9) Ohm · m - N() bes. Funktion im Nenner von Gl. 3 (10) Ohm2 - D() bes. Funktion im Nenner der Gl. 3 (1) m2 0=4 ·10–7 H/m 0=(1/36)·10–9 F/m für Luft. Mit 3 Textabbildungen  相似文献   

4.
5.
The effects of magnetic field (H) and pressure (P) on the temperature (T) dependence of electrical resistivity () are reported for a new manganese-containing compound, Pr2/3(Ca,Pb)1/3MnO3, which was grown in single-crystal form by a flux method. The material was found to order magnetically with applied-field strength below 175 K, but have zero remanence (M R ) as HO, i.e., there was no spontaneous magnetization (M S ), only field-induced magnetization (M i ). A zero-field insulator to metal transition occurred at 146 K and this transition temperature (T 1M ) was found to increase with increasing field strength. The change in resistivity with field, O-H, normalized with respect to H, was 900% at 146 K and H = 5T. On application of hydrostatic pressure the zero-field resistivity decreased by 200%/GPa above room temperature. The electrical transport observed was consistent with a thermally-activated process, and this process was found to be relatively independent of pressure (0–4 GPa) in the temperature region (300 K–400 K) studied.  相似文献   

6.
Inhaltsübersicht Die Aufgabe und ihre Daten—1. Das elektrische Strömungsfeld und das parasitäre elektrische Luftfeld: 1.1. Die formale Lösung für das elektrische Strömungsfeld; 1.2. Die Lösung der Aufgabe in Reihenform und der Zusammenhang mit der Methode der elektrischen Bilder; 1.3. Die Potentialfunktion des vom Strömungsfeld abhängenden elektrostatischen Feldes im Luftraumz0; 1.4. Die Berechnung der elektrischen Strömung i(±, z) aus der PotentialfunktionV(, ,z) und die Darstellung in Zylinderkoordinaten—2. Das Magnetfeld des Strömungsfeldes: 2.1. Die grundlegenden Integraldarstellungen für die drei Komponenten des Vektorpotentials; 2.2. Die drei inhomogenen und verkoppelten partiellen Differentialgleichungen für die drei Komponenten des Vektorpotentials, die HilfsfunktionU(, ,z) im FalleB z=0; 2.3. Die direkte Berechnung der KomponenteA z(, ,z) des Vektorpotentials; 2.4. Die direkte Berechnung der KomponentenA (, ,z) undA (, ,z) des Vektorpotentials aus den Integraldarstellungen; 2.5. Das Vektorpotential und das Magnetfeld der stromdurchflossenen Kabellänge zwischen den Punkten (±a,o,—h); 2.6. Der magnetische Feldanteil mitB z=0–3. Schlußbemerkungen.Physikalische Bedeutung der benutzten Symbole; Einheiten , ,z;x, y, z die Zylinderkoordinaten oder die kartesischen Koordinaten des Aufpunktes, - , ,z die Koordinaten des Quellpunktes oder des Wirbelpunktes; in beiden Fällen sind die Längen in m zu messen, - die elektrische Leitfähigkeit in S/m; Index 1 Wasser, Index 2 Erdkörper - h Abstand des Kabels von der Meeresoberfläche in m - H mittlere Tiefe des Meeres über die Länge des Kabels in m - 0 die Dielektrizitätskonstante der Luft - 0 die Permeabilität von Luft, Wasser, Erdkörper: - i elektrische Stromdichte in A/m2 - V Potentialfunktion in V - U das Vektorpotential in Vs/m - B die magnetische Induktion in Vs/m2 - qF die elektrische Flächenladung As/m2 Mit 2 Textabbildungen  相似文献   

7.
Contents A method for the solution of initial-boundary-value problems of the wave equation with moving boundary conditions is presented, which transforms the wave equation for the region with moving boundary into a form-invariant wave equation for a region with fixed boundary. Two kinds of transformations are found which refer to regions (1) expanding and (2) contracting with (increasing) time. As an application, the compression of microwaves in a one-dimensional cavity 0xs(t) with fixed liner atx=0 and an inward moving liner atx=s(t) is treated analytically. It is shown that large amounts of microwave energy can be generated in the final compression stages(t)0 with the help of a copper liner driven by explosives ( 10^3 m/s$$ " align="middle" border="0"> ), for times of the order of the electromagnetic diffusion time, D =d 210-2s. Such microwave compressions proceed quasi-statically for non-relativistic liner velocities, .
Transformations-Methode für elektromagnetische Wellenprobleme mit bewegten Randbedingungen
Übersicht Eine Methode zur Lösung von Anfangs-Randwert-Problemen der Wellengleichung mit bewegten Randbedingungen wird gegeben, welche die Wellengleichung für das Gebiet mit bewegter Grenzfläche in eine form-invariante Wellengleichung für ein Gebiet mit ruhender Grenzfläche umformt. Zwei Arten von Transformationen werden gefunden, welche sich auf zeitlich (1) expandierende und (2) schrumpfende Gebiete beziehen. Als Anwendung wird die Kompression von Mikrowellen in einem eindimensionalen Hohlraum 0xs(t) mit einem festen Liner beix=0 und einem nach Innen bewegten Liner beix=s(t) analytisch behandelt. Es wird gezeigt, daß sich große Mengen von Mikrowellen-Energie in der Endphases(t)0 der Kompression mit Hilfe eines durch Explosivstoffe angetriebenen Kupfer Liners ( 10^3 m/s$$ " align="middle" border="0"> ) erzeugen lassen, für Zeiten von der Größenordnung der elektromagnetischen Diffusionszeit D =d 210-2s. Derartige Mikrowellen-Kompressionen erfolgen quasi-statisch bei nicht-relativistischen Liner Geschwindigkeiten, .
  相似文献   

8.
9.
Ohne ZusammenfassungZusammenstellung der Formelzeichen =2 f die Kreisfrequenz und die gewöhnliche Schwingungszahl in Hz/s, - exp (–it) das Zeitgesetz der stationären Dipolschwingung - g (e)=–i die elektrodynamische Leitfähigkeit für den elektrischen Verschiebungsstrom in S/cm mit= =1/36·10–11 F/cm für das Vakuum - g (m)=+i die elektrodynamische Leitfähigkeit für den magnetischen Verschiebungsstrom in Ohm/cm mit=4·10H/cm für das Vakuum - c=()–1/2 die dem Medium zukommende Lichtgeschwindigkeit in cm/s, - =c/f die der aufgedrückten Schwingung zukommende Vakuumwellenlänge in cm - 2/ die Wellenzahl des Mediums in 1/cm - (/)1/2 der Wellenwiderstand der freien Raumwelle mit dem Zahlenwert 120 Ohm - die elektrische und magnetische Feldstärke in V/cm und A/cm - x, y, z die drei rechtwinkligen und rechtshändigen Cartesischen Koordinaten - , , die drei rechtwinkligen und rechtshändigen Zylinderkoordinaten - , , die drei rechtwinkligen und rechtshändigen parabolischen Koordinaten - r der Wert für die parabolische Koordinate in der Begrenzungsfläche des parabolischen Horns oder die Brennweite des Drehparabols in cm - q der Wert für die parabolische Koordinate, die die Lage des Dipols auf der Achse fixiert - '=2k die dimensionslosen, reduzierten, parabolischen Koordinaten - R, R q der Abstand des Brennpunkts oder des Dipols vom Aufpunkt in cm - I (e)·,I (m)· das elektrische oder magnetische Moment des Dipols in A/cm und V/cm mit als elementare Dipollänge - zwei Hilfsvektoren in A und V, von denen nur diez-Komponente von Null verschieden ist  相似文献   

10.
Contents The paper which is a continuation of the paper [10] discusses determining eddy curent losses and electrodynamic forces in cylindrical segments (Joffe's conductors) placed in the field of a thin conductor carrying current. On the basis of the numerical calculations, graphs of electrodynamic forces and of real power losses were plotted.
Stromverdrängung in zylindrischen Segmenten in Felde eines dünnen Leiters
Übersicht Der Beitrag stellt eine Kontinuation des Beitrags [10] dar. Unter Verwendung der Bobnov-Galerkin-Methode in Verbindung mit der Variablentrennungsmethode werden in den zylindrischen Segmenten die durch Wirbelströme hervorgerufenen Verluste und elektrodynamischen Kräfte ermittelt. Es werden numerische Berechnungen durchgeführt, auf deren Grundlage Diagramme der wirkleistungsverluste und der elektrodynamischer Kräfte aufgestellt werden.

List of main symbols A z-component of the vector potential (complex, r.m.s. value) - J z-component of the current density (complex r.m.s. value) - B x, By components of the magnetic induction complex r.m.s. values) - I, |I| complex current, r.m.s. value of curent - F electrodynamic force - imaginary unit - z * conjugate complex number ofz - Rez, Im,z, |z| real part, imaginary part and modulus of complex numberz - k - K number of segment - /n derivative in the normal external direction - 2 scalar Laplacian - permeability - conductivity - pulsation - P Joule power distribution coefficient - r, ,z cylindrical coordinates  相似文献   

11.
Übersicht Zur rechnerischen Untersuchung nichtstationärer Vorgänge bei Asynchronmaschinen mit Käfigläufern wird die Stromverdrängung mit Hilfe der Doppelkäfignäherung in einem auf der Grundlage der Zweiachsentheorie aufgebauten elektromechanischen Gleichungssystem berücksichtigt. Die Einflüsse der Eisensättigung in der Leerlaufkennlinie und in der Kurzschlußkennlinie können in erweiterten Gleichungen mit beachtet werden. Die Auswertung des Systems erfolgt in der Nachbildung am Analogrechner. Die Rechenergebnisse von Hochlauf-, Einschalt- und Netzumschaltungsuntersuchungen für große Motoren werden angegeben.
Contents The behaviour of squirrel-cage induction machines is described by a system of differential equations based on the cross-field theory. With respect to the skin effect the rotor is represented by a double-cage approximation. Saturation of the main flux and leakage flux as well can be taken into account by an expanded form of equations. An analogue computer was used for numerical computation; results are given for the transient performance of large motors in cases of starting, starting with pony-motor and reclosing on an auxiliary power supply line.

Übersicht der wichtigsten Formelzeichen

Indizes S Ständer - L Läufer allgemein - o Oberkäfig - u Unterkäfig - h Hauptfeld - a, b, c Dreiphasensystem - , , o Komponentensystem - N Nennwert - K Kurzschlußwert; Kippwert - auf Streuung bezogen - R Regulierläufer (Schleifringläufer) - G Gegenwirkung (Last) - A Anlauf - * konj. komplexer Wert Veränderliche Unabhängig =2f·t Zeitwinkel Abhängig u Spannungen - i Ströme - verkettete Flüsse - m Drehmoment - s Schlupf - s Korrekturfaktor für Ständerwiderstand - Korrekturfaktor für Streuwegsättigung - Komplexe Zusammenfassung der ,-Komponenten u=u +ju ; +j i=i +ji Konstanten Kurzschlußreaktanzen - Kurzschlußdämpfungen - Kurzschlußströme - Nennflüsse Weitere Koeffizienten T A mech. Anlaufzeitkonstante - Gewichtsfaktoren bei der Hauptflußbildung Im allgemeinen werden Veränderliche mit kleinen, konstante Wert mit großen Buchstaben bezeichnet.  相似文献   

12.
Übersicht Der im Aufbau einfache Spaltpolmotor erfordert zur Erklärung und Behandlung aller Erscheinungen ein umfangreiches Gleichungssystem. Aus den Spannungsgleichungen lassen sich über die Motorkenngrößen die Ströme und hieraus über die fiktiven Luftspaltfelder die Drehmomente ermitteln. Sättigungs-und Oberfeld-Einflüsse werden berücksichtigt. Die Wirkungen der Luftspaltfelder, wie Erzeugung von Drehmomenten, Stromwärmeverlusten, Luft- und Körperschall, werden ebenso behandelt wie die Verringerung der schädlichen Felder. Messungen an einem großen, stark ausgenutzten Motor bestätigen die abgeleiteten Gleichungen. Für die Untersuchung der Luftspaltfelder werden drei Verfahren benutzt. Die Arbeit schließt mit Auslegungsrichtlinien und Regeln für die Vorausberechnung.Übersicht der benutzten Formelzeichen Augenblickswert des Strombelags in A/cm - Augenblickswert der Induktion in Vs/cm2 - Diagrammvektor des Stromes in A - Totale Induktivität in Hy - Teilinduktivität in Hy - Gegeninduktivität in Hy - Augenblickswert der Radialkraftwelle in kp - Amplitude der Radialkraftwelle in kp - Diagrammvektor der Spannung in V - A Amplitude der Strombelagswelle in A/cm - B Amplitude der Drehinduktionswelle in Vs/cm2 - b Ständerabmessung in cm - C 1 Federhärte der Läuferwelle in kp/cm - c y Fourierkoeffizient fürv-tes Feld - d v Fourierkoeffizient fürv-tes Feld - E Effektivwert der EMK in V - e 2, 7182=Basis des natürlichen Logarithmus - e x Augenblickswert der an der Stelle induzierten EMK in V - F Amplitude der Felderregerwelle in A - F sp Wirksamer Durchtrittsquerschnitt der Meßspule in cm2 - f Frequenz in Hz - f() Augenblickswert der Felderregerkurve in A - g ganze Zahlen=1,2,3,... - I Effektivwert des Stromes in A - i Augenblickswert des Stromes in A - j - K Konstante - l Effektive, achsiale Länge des Blechpakets in cm - l m Mittlere Windungslänge in m - M Drehmoment in cmkp - N rel Relative Strahlungsleistung in W - n Umdrehungszahl in 1/min - n 0 Synchrone Drehzahl des Grundfeldes in 1/min - p Polpaarzahl des Grundfeldes - q Leiterquerschnitt in mm2 - R Läuferaußenradius in cm - R Gesamter Wirkwiderstand einer Wicklung in (gekennzeichnet durch , oder ) - Ordnungszahl (Polpaarzahl) der Radialkraftwelle - Teilwiderstand in (gekennzeichnet durch , oder ) - s Schlupf - t Zeit in s - t Polteilung in cm - U Effektivwert der Spannung in V - u Augenblickswert der Spannung in V - V Stromwärmeverluste in W - Windungszahl - Umfangskoordinate - Z Läufernutenzahl - s Schrägungswinkel - Geometrischer Luftspalt in cm (ohne Kennzeichnung) - Effektiver Luftspalt in cm (mit Kennzeichnung) - Räumlicher Winkel zwischen Haupt- und Spaltpol - Feldfaktor - 1 Resonanzüberhöhung - Spezifische elektrische Leitfähigkeitin m/mm2 - Ordnungszahl der Felder - Streuleitwert (mit Kennzeichnung) - Ordnungszahl der Oberströme - 0 4 °10–9 - str Relative magnetische Leitfähigkeit des Streublechs - v Polpaarzahl der Felder - 3,1415 - Ordnungszahl der Oberströme - Streufaktor (mit Kennzeichnung) - g Geometrischer Streukoeffizient des Läufers - Scheitelwert des magnetischen Flusses in Vs - Elektrischer Phasenwinkel - Kreisfrequenz in 1/s - A Anzugs- - ges. Gesamt- - i Bestimmter Wert - K Kipp- - L Luftspalt- - m Mittlerer Wert - N Nenn- - o Leerlauf, offener Läufer - p Grundfeld - R Läuferendring oder Wickelkopf - res. Resultierend - s Läuferstab- - sp Meßspule - str Streublech - Stelle - -tes Feld - -ter Erregerstrom - v v-tes Feld - -ter Erregerstrom - Streuinduktivität (ber und ) - -ter Erregerstrom - 1 r=1 - 12 Hauptopol-Läufer - 32 Spaltpol-Läufer - 13 Hauptpol-Spaltpol - 3p 3p-faches Feld - + Mitlaufende Komponente - – Gegenlaufende Komponente - = Gleichstrom - Hauptpol - Läufer - Spaltpol - Vektor Mit 25 Textabbildungen  相似文献   

13.
Inhaltsübersicht Einleitung — Magnetsysteme — Aufstellung der Bewegungsgleichung für einen Hubmagneten — Bewegungsgleichung eines Klappankermagneten — Berechnung des Stromes aus der Durchflutung — Berechnung des Stromes bei konstanter Induktion — Versuchsergebnisse — Linearisierung der Gleichung — Berechnungen mit elektronischem Analogrechner und Digitalrechner — Bestimmung der beim kompletten Schutz durch die Kontaktbrücke hervorgerufenen Trägheitskraft — Zusammenfassung — Literatur.Bezeichnungen und Größen P (x oder ) Federvorspannung plus Gewicht in jedem einzelnen Punkt des Weges - f (x oder )·x Kraftbedarf in jedem einzelnen Punkt des Weges - f (x oder ) Federkonstante in jedem Punkt des Weges - P (x oder ) Vom Antriebssystem aufgebrachte Kraft in jedem einzelnen Punkt des Weges=c·4,04·10 - xoder Brems- und Reibkonstante in jedem Punkt des Weges - B E Kraftflußdichte beis L =0 [Gauß] - B L Kraftflußdichte beis L 0 [Gauß] - E Eisendurchflutung [AW] - L Luftspaltdurchflutung [AW] - H E Feldstärke in Eisen [AW/cm] - H L Kraftflußdichtei. Zeitpunktt=0 (Anfang des Vorganges [Gauß]) - R (x oder ) Ohmscher Widerstandsanteil - ui (xoder ) Phasenwinkel - c (x oder ) =Streufaktor - E Fluß im Eisen [Gauß cm2] - 0 Fluß im Eisen im Zeitpunktt=0 (Anfang des Vorganges [Gauß cm2]) - 14,8°– - Laufende Winkelgröße von 0°<<11,6° - I Trägheitsmoment - G s Gewicht des Ankers am Schwerpunkt in horizontaler Lage (=90°)=220 [p] - r s Radialer Abstand des Schwerpunktes =3,24 [cm] - r p Radialer Abstand der Polflächenmitte =5,25 [cm] - r Radialer Abstand des Angriffspunktes der Federkräfte und Nutzlasten =6,225 [cm] - P t tangential wirkende Kraft an der Polfläche - P senkrecht zur Magnetpolfläche wirkende Kraft. (Gemessen wurde mittels Meßapparatur die senkrecht wirkende KraftP ). - F Querschnitt des Ankers an seiner dünnsten Stelle =2,94 [cm2] - f p Füllfaktor =0,95 - F p wirksame Eisenfläche =2,94×0,95=2,79 [cm2] - n Windungszahl der Spule =2080 [Wdgn.] - s O-s E +s L mittlere Eisenweglänge =19,23 [cm] - s E reiner Eisenweg =19,2 [cm] - s L Luftspalt bei angezogenem Schütz =0,03 [cm] - L() Luftspaltabhängige Induktivität der Spule - R() Luftspaltabhängiger Widerstand der Spule - G p Gewicht des Ankers bezogen auf die Polfläche =356 [p] - P M Senkrecht wirkende Kraft der Brückenmasse bezogen auf den Ansatzpunkt des Kniehebels am Anker [p] - P Mt Tangential wirkende Kraft der Brückenmasse bezogen auf den Ansatzpunkt des Kniehebels am Anker [p] - P Mtp = Tangentiale Kraft der Brückenmasse bezogen auf Polflächenmitte [p] - Winkel unter dem die senkrechte Kraft der Brückenmasse tangential wirksam wird - m B Masse der Kontaktbrücke =340 [g] - y B =0,83 Brückenhub [cm] - y A =0,2 Ankerhub am Ansatzpunkt des Kniehebels [cm] Mit 28 Textabbildungen  相似文献   

14.
Contents On the basis of finite element method the analysis of skin effect occurring in the rectangular conductor carrying sinusoidal current has been performed. The conductor is surrounded by a cylindrical surface. Outside that surface the method of variable division has been applied and inside — the Bubnov-Galerkin method by means of numerical calculations with the use of finite-element method. — On the basis of the data obtained the numerical calculations were performed and the plots of resistance and reactance were drawn.
Feldanalyse in einem rechteckigen den sinusoidalen Strom leitenden Leiter mit der Methode der finiten Elemente
Übersicht In diesem Beitrag wird in Anlehnung an die Methode der finiten Elemente eine zweidimensionale Analyse der Stromverdrängung in einem rechteckigen den sinusoidalen Strom leitenden Leiter durchgeführt. Der Leiter ist mit einer Zylinderfläche umgeben, in deren Inneren man die Variablentrennungsmethode verwendet und Außen — die Bubnov-Galerkin-Methode (eine nummerische Realisierung dieser Methode unter Benutzung der Methode der finiten Elemente). — Auf Grundlage der erhaltenen Abhängigkeiten werden digitale Berechnungen durchgeführt, die man zur Ausführung der Resistanz- und Reaktanz-Diagramme verwendet.

Symbols A vector potential (complex r.m.s. value) - A z-component of A (complex r.m.s. value) - B magnetic induction vector (complex r.m.s. value) - tangential component of the magnetic induction vector (complex r.m.s. value) - normal component of the magnetic induction vector (complex r.m.s. value) - E electric field intensity (complex r.m.s. value) - i, j, k numbers of vertices of the considered finite element - J current (r.m.s. value) - imaginary unit - imaginary unit - R resistance - R 0 D.C. resistance - S boundary of region - T finite element area - X reactance - Z impedance - z * conjugate complex number ofz - basis function - magnetic permeability - pulsation - i, j, k function of finite element shape - conductivity - region - h region approximating the region - e finite element region - 3.141593... - 2 scalar Laplacian - 1 n ; 1 t ; 1 z unit vector in normal external, tangential andz-axis direction - x, y, z rectangular coordinates - r, ,z cylindrical coordinates  相似文献   

15.
Übersicht Es wird in dieser Arbeit die Stromverteilung in einem hinreichend langen, metallischen Stab von trapezförmigem Querschnitt berechnet, der von einem Wechselstrom durchflossen wird und bis auf einen schmalen, von einem magnetischen Wechselfeld erfüllten Luftschlitz von allen Seiten ohne merklichen Luftzwischenraum und isoliert in eine unendlich permeable, metallische Hülle eingebettet liegt. Der Umriß des Leiters mit dem trapezförmigen Querschnitt besteht aus zwei gegenüberliegenden, gleich langen, auseinander-strebenden Geradenstücken, deren Endpunkt oben und unten durch konzentrische Kreisbogen verbunden sind. Die maßgebende partielle Differentialgleichung für die FeldkomponenteE z (, ) in Richtungz der Längsstreckung eines solchen Nutenleiters entspricht dann der ebenen Wellengleichugn in Zylinderkoordinaten.Nicht streng erfaßbar ist bei Anwendung dieser Methode geradeso wie in den beiden anderen bereits durchgerechneten Fällen, wo es sich um einen rechteckigen oder kreisförmigen Nutenquerschnitt handelt, der Einfluß der Öffnungsweite des Nutenschlitzes in der Oberfläche des Nutenleiters. Ist er hinreichend schmal, so kann die Verteilung der maßgebenden magnetischen Feldkomponente als gleichmäßig angesehen werden. Bei genaueren Rechnungen müßte man über die Fourierkomponenten des Feldes der magnetischen Induktion im Nutenschlitz Bescheid wissen. Diese Annahme wird in der Arbeit gemacht.
Summary In this paper is reported on the distribution of an alternating current over the trapezoid crosssection of a metallic and sufficiently long conductor, who ist embedded in an infinitely permeable envelop up to a narrow air slit containing an alternating magnetic field, the feeler of the airgapfield between stator and rotor. The contour of the conductor with the trapezoid cross-section is composed here of two equally long opposite but divergent straight lines. The endpoints of which on the two ends are connected by two concentric circular arcs. The decisive partial differential equation for the field componentE z (, ) in the direction of the conductor corresponds to the two dimensional wave equation in cylinder coordinates.As in the two other cases which are already counted over conformal with this method, namely in the cases of the rectangular and circular cross-section, the influence of the width of the slit is not exactly to realise. In cases which call for more excit calculations, it would be necessary to have knowledge of the Fourier-components of the magnetic induction in the slits of the grooves.

Übersicht der Abkürzungen und der mathematischen Zeichen E die elektrische Feldstärke in V/m als Betrag des Vektors , - H die magnetische Feldstärke in A/m als Betrag des Vektors , - B die magnetische Induktion oder die Flußdichte in Vs/m2 als Betrag von , - 0 die magnetische Feldkonstante von der Größe 4·10–9 H/m, die elektrische Leitfähigkeit des Nutenleiters in S/m - =2f die Kreisfrequenz in 1/s - d=(2/0)1/2 das Eindringmaß in m - die imaginäre Einheit - eine besondere komplexe Konstante mit der Dimension 1/m - 2 die totale Winkelbreite des keilförmigen Nutenleiters - , ,z die drei Zylinderkoordinaten mit [, ,z] in m - i , a die Radien der oberen und unteren Begrenzungskreisbögen des Nutenquerschnitts von Bild 1 in m - 2 der doppelte öffnungswinkel zwischen den Zahnflanken - I (h )K r (h ) die beiden modifizierten Zylinderfunktionen mit dem Parameter - die beiden, in ihren Richtungen von abhängenden Einheitsvektoren im Zylinderkoordinatensystem - der dritte, stets parallel zurz-Achse gerichtete Einheitsvektor - D n die Koeffizienten in der maßgebenden Fourier-Entwicklung vonB (, ) in Gl. 2(9) mit der Dimension Vs/m (n=0, 1, 2 ...), - e jt das Gesetz der zeitlichen Strom- und Feldänderungen Mit 4 Textabbildungen  相似文献   

16.
Contents The Joule power losses in a cylindrical conductor placed in a semi-closed slot and the electrodynamic force acting on this conductor are calculated. The equivalent circuit of the impedance of the conductor is also considered. The investigations are made by using the Bubnow-Galerkin method for the parabolic equation.
Übersicht Es werden die Stromwärmeverluste für den kreisförmigen Leiter in der halbgeschlossenen Nut einer elektrischen Maschine und die auf den Leiter wirkende Kraft berechnet. Die Ersatzschaltungen für die Impedanz einer Maschinennut werden weiter betrachtet. Zur Analyse der parabolischen Differentialgleichung wird die Methode von Bubnow-Galerkin angewandt.

Symbols B magnetic induction - B r ,B components of magnetic induction - C operator in Hilbert space - E z-component of electric field - F -component of electrodynamic force - H Hilbert space - I current (transient value in Part 2, complex r.m.s. value in Appendix 1) - imaginary unit - L inductance - Laplace transform - P power - R resistance - Z impedance - z * conjugate number with complex numberz - Rez, Imz, |z| real part, imaginary part and modulus of complex numberz - magnetic permeability - conductivity - pulsation - 2 scalar laplacian - (|y) scalar product of elements ,y of Hilbert space - norm of element of Hilbert space  相似文献   

17.
Übersicht In dieser Arbeit werden das Betriebsverhalten und die Parameter vollgesteuerter netzgelöschter Stromrichter im Lückbetrieb bei einer induktiven Last mit Gegenspannung abgeleitet und berechnet. Für Stromrichter mit ausgewählten Pulszahlen werden die Grenzen der Arbeitsphasen, die Leitdauerdiagramme und die Strom-Spannungs-Diagramme numerisch berechnet und graphisch dargestellt.
Contents This article gives a derivation and computation of the operational behaviour and of the parameters of full-controlled line-commutated converters with discontinuous current for an inductive load with back voltage. The limits of the operating phases, the characteristics of current-flow duration and the voltage-current characteristics are computed and plotted for converters with selected pulse numbers.

Verzeichnis der verwendeten Symbole A, B Hilfsgrößen - E Gegenspannung - g bezogene Gegenspannung - g gg Grenzwert Gleichrichterbetrieb - g 0 Grenzwert für =o - i Stromaugenblickswert - I da arithmetischer Mittelwert des Stromes - I de Effektivwert des Stromes - Effektivwert des überlagerten Wechselstromes - I max Maximalwert des Stromes - I min Minimalwert des Stromes - L Induktivität - p Pulszahl - t Zeit - T Periodendauer - u Spannungsaugenblickswert - U Effektivwert der Netzstrangspannung - U dio ideelle Leerlaufgleichspannung - w Welligkeit des Stromes (Effektivwert-) - Oberschwingungsgehalt des Stromes - z langer Zündimpuls true/false - Steuerwinkel - gg Grenzwert Gleichrichterbetrieb - gw Grenzwert Wechselrichterbetrieb - Zündverzögerungswinkel - gg Grenzwert Gleichrichterbetrieb - gw Grenzwert Wechselrichterbetrieb - Stromflußdauer - Zündimpulslänge - natürlicher Zündzeitpunkt - bezogene Zeit - Netzkreisfrequenz  相似文献   

18.
Übersicht Es wird das stationäre Verhalten einer einphasigen elektrischen Welle aus zwei gleichen Drehstromasynchronmaschinen mit Schleifringläufern unter Verwendung der Methode der symmetrischen Komponenten untersucht.Die Leistungsbilanz und die Stabilität einer Einphasenwelle unter Vernachlässigung der Dämpfung (statische Stabilität) werden behandelt und in eine Formel dafür abgeleitet. Ferner die daraus gewonnenen Rechenergebnisse werden mit Meßwerten verglichen. Es wird festgestellt, daß sich die die Einphasenwelle im Stillstand für Drehmomentübertragung mit Vorteil verwenden läßt.Zusammenstellung der benutzten Bezeichnungen U N Netzspannung (V) - U m ,U g ,U 0 Spannung des Mit-, Gegen- und Nullsystems (V) - j - P Polpaarzahl - Verdrehungswinkel des Läufers derten Wellenmaschine in Richtung des Drehfeldes des Mitsystems (=1,2) - 10, 20 Gleichgewichtswerte (oel.) - P 2- 2 = gegenseitiger Verdrehungswinkel der Läufer (oel.) - Winkelgeschwindigkeit des Läufers der -ten Wellenmaschine (s–1) - Drehbeschleunigung des Läufers der -ten Wellenmaschine (s–2) - m Mitsystem - g Gegensystem - o Nullsystem - 1 Wellenmaschine 1 - 2 Wellenmaschine 2 - Primärseite (Ständer) - Sekundärseite (Läufer) - J 1 Primärstrom (Netzstrom) (A) - J m ,J g Strom des Mit- und Gegensystems (A) - J re ,J im reeller bzw. imaginärer Anteil des Primärnetzstromes der -ten Wellenmaschine (A) - J Läuferstrom der einphasigen elektrischen Welle (A) - , Ständer- bzw. Läufer-Streukoeffizient - totaler Streukoeffizient - R ohmscher Widerstand () - Streublindwiderstand () - l Nutz-(Magnetisierungs-)blindwiderstand () - L l(1+)=Drehfeldinduktivität (H) - l Drehfeldhauptinduktivität (H) - l Streuinduktivität (H) - n Drehzahl (U/min) - n 0 synchrone Drehzahl (U/min) - s Schlupf - s K Kippschlupf der dreiphasigen Asynchronmaschine - M Drehmoment eines Wellenmotors(mkg) - M K Kippmoment der dreiphasigen Asynchronmaschine (mkg) - N d Drehfeldleistung einer Wellenmaschine (W) - N Vom Netz aufgenommene Leistung eines Motors der Einphasenwelle (W) - V undV Ständer- und Läuferkupferverluste (W) - N m abgegebene mechanische Leistung (W) - N s abgegebene Wirkleistung an den Schleifringen (W) - N Gs gesamte vom Netz aufgenommene Leistung der einphasigen elektrischen Welle (W) - Winkelabweichungen von der Gleichgewichtslage - Trägheitsmoment (mkg s2) - Kreisfrequenz der ungedampften Schwingung (s –1) - N bs Schleifringblindleistung (bkW) - N b Blindleistung (bkW) - N Läuferblindstreuleistung (bkW) - N Statorstreuverluste (bkW) - f b berechnete Frequenz (Hz) - f m gemessene Frequenz (Hz) Mit 13 Textabbildungen  相似文献   

19.
Übersicht Neben der üblichen Formulierung der Leistungsbegriffe für periodische nichtsinusförmige Ströme oder Spannungen im Frequenzbereich wird besonders die Darstellung von Schein-, Wirk- und Blindleistung im Zeitbereich untersucht. Für die Leistungsbegriffe wird solchen Formen der Vorzug gegeben, die auch künftigen Entwicklungen und möglichen Anforderungen gerecht werden können.
A note on power definitions for currents and voltages with harmonics
Contents Besides the usual definitions of power terms for periodical non-sinusoidal currents and voltages in the frequency domain the presentation of apparent-, effective-(active-) and fictitious (reactive) power particularly in the time domain is investigated. For power terms such forms are preferred which will cope future developments and possible requirements.

Benutzte formelzeichen = Gleichheit gemäß Definition - für alle - v.p. valor principalis (Hauptwert) - Re Realteil - Im Imaginärteil - e Einheitsvektor 2. Stufe - O Nullvektor - A Spaltenvektor - A -te Komponente vonA - A * konjugiert komplexer Spaltenvektor - A T transponierter Spaltenvektor=Zeilenvektor - <A, B inneres Produkt zwischenA undB - |A| =+<A, A Betrag vonA - >A, B< (A v B A B v) äußeres Produkt zwischenA undB - i j Zeitfunktion des Stromes - komplexer Effektivwert der -ten Teilschwingung voni t - i veff - I Vektor der komplexen Effektivwerte aller Teilschwingungen voni t - i eff =|I| - p t Augenblicksleistung - P Wirkleistung - Q Blindleistung - Q V Verschiebungsblindleistung - Q D Verzerrungsblindleistung - S Scheinleistung  相似文献   

20.
Übersicht Für Drehzahlstellantriebe größerer Leistung bietet der Käligläufermotor mit 6 Wicklungsphasen und Versorgung durch zwei Stromumrichter deutliche Vorteile gegen-fiber dem 3-Phasenmotor mit 6-pulsiger oder auch 12-pulsiger Umrichterspeisung. Es werden die Größen untersucht und verglichen, die für die Wechselwirkung zwischen Motor und Umrichter charakteristisch sind:Die Induktivitäten und Phasenkopplungen, das Ersatzschahbild, die Pendelmomente und die Wirbelstromverluste.
The current-source inverter-supplied induction motor with three and six phases
Contents For speed control drives of greater power ratings the induction motor with 6 phases supplied by two current source inverters is superior to the 3-phases motor supplied by an inverter working in 6- or 12-pulse mode. All quantities characteristic for interactions between motor and inverter are analysed.The inductances and phase couplings, the electrical equivalent circuit, the torque harmonics and the eddy current losses.

Verwendete Symbole d L Leiterdurchmesser - f, f 1 Speisefrequenz - k() Kopplungsfaktor zweier um den Winkel versetzter Stränge - Widerstandserhöhung der in Nuten liegenden Leiter - Widerstandserhöhung der gesamten Wicklung - l i ideelle Eisenlänge - l s mittlere Länge der Stirnverbindungen - L h Hauptinduktivität - L K Kurzschlußinduktivität - L 1,L 2 Ständer- bzw. Läuferstreuinduktivität - L N Nutstreuinduktivität - L oS Stirnstreuinduktivität - L oW Induktivität der doppelt verketteten Streuung - m Strangzahl - m el Luftspaltmoment (als Zeitfunktion) - M N Nennmoment - n Drehzahl - n Ordnungszahl für (räumliche) Oberwellen des Luftspaltfeldes - N Nutzahl - p Polpaarzahl - q Zahl der Ständernuten je Pol und Strang - s Sehnung in Nutteilungen - t smin minimale Schonzeit der Thyristoren - V Magnetisierungsdurchflutung eines Pols - Windungszahl eines Stranges - Sp Windungszahl einer Spule - W S Spulenweite - Operatorimpedanz - Phasenverschiebung zwischen den Strömen der Ober- und Unterschicht - res magnetisch wirksamer Luftspalt - ... Beiwert des magnetischen Leitwerts - Ordnungszahl der (zeitlichen) Oberschwingungen der Ströme und des Drehmoments - reduzierte Leiterhöhe nach [10] - (n ) Wicklungsfaktor fürn-te Oberwelle des Luftspaltfelds - K für die Kommutierung wirksamer totaler Streufaktor - p Polteilung - (), () Hilfsfunktionen, siehe Gleichungen (54), (57) - Polfluß - verketteter Fluß - , Winkel, siehe Bild 9 - , 1 Speisefrequenz - 2 Läuferkreisfrequenz - 0 Eigenkreisfrequenz des Kommutierungskreises Indizierung u 1,i 1,U 1,... Ständergrößen - u 2,i 2,U 2,... Läufergrößen - L ..a Stranginduktivität - L ..b Koppelinduktivität zweier um 30° versetzter Stränge - L ..c Sternpunktinduktivität - I ..(), Î..(), M..(),... Anteil der -ten Oberschwingung - Anteil dern-ten Oberwelle  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号