首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Four multiparous Holstein cows averaging 133 d postpartum and fitted with ruminal cannulas were utilized in a 4 x 4 Latin square design to investigate the effects of feeding diets containing whole soybeans and tallow. Treatments were 1) control, no added fat; 2) control and 10% whole raw soybeans; 3) control, 10% whole raw soybeans, and 2.5% tallow; and 4) control, 10% whole raw soybeans, and 4.0% tallow. Cows were fed for ad libitum intake a diet of alfalfa haylage, corn silage, and concentrate (45:5:50, DM basis). Intakes of DM and production of milk, milk CP, milk SNF, and 4% FCM were not affected by feeding supplemental fat. Production of milk fat and weight percentages and yields of long-chain fatty acids in milk fat were increased, whereas weight percentages and yields of short- and medium-chain fatty acids were decreased by feeding supplemental fat. Digestibilities of DM, OM, energy, cellulose, and fatty acids were decreased slightly when fat was added to the diet, but utilization of energy and N for production of milk was not altered. Supplemental fats increased concentrations of NEFA and cholesterol in plasma. These data indicate that relatively large amounts of unprotected fat can be added to the diet of lactating dairy cows without deleterious effects on milk composition, ruminal fermentation, or nutrient digestibilities.  相似文献   

2.
Four cows were utilized in a 4 x 4 Latin square design to investigate the effects of feeding Ca salts of long-chain fatty acids. Treatments were control diet with 1) no added fat, 2) 3% Ca salts of long-chain fatty acids, 3) 6% Ca salts of long-chain fatty acids, and 4) 9% Ca salts of long-chain fatty acids. Cows were fed chopped alfalfa hay, alfalfa haylage, corn silage, and concentrate (15:22:13:50) on a DM basis. Dry matter intake, energy intake, and ruminal fermentation were not altered greatly until Ca salts of long-chain fatty acids constituted 9% of DMI. Digestibilities of DM, OM, ADF, NDF, and hemicellulose were not affected by treatment. Digestibilities of cellulose, soluble residue, total C18 fatty acids, and total fatty acids followed quadratic patterns. Absorption of N was increased linearly when fat was fed, but digestibility of Ca was decreased linearly. Milk production, CP, and SNF were not altered greatly by inclusion of 3 or 6% Ca salts of long-chain fatty acids in the diet, but inclusion of 9% Ca salts of long-chain fatty acids decreased their production. Calcium salts of long-chain fatty acids increased milk fat percentage and production of fat and FCM when fed as 3 or 6% of the dietary DM but decreased yields of milk fat and FCM when fed as 9%. Calcium salts of fatty acids can be fed to provide up to 6% of the dietary DM without deleterious effects on ruminal fermentation and digestibilities of most nutrients.  相似文献   

3.
Four multiparous ruminally canulated cows and four primiparous cows without a ruminal cannula were used in a 4 × 4 Latin square experiment to study the effect of dietary fat source on milk fatty acid composition. Cows were fed a diet containing 550 g lucerne silage and 450 g concentrate kg?1 dietary DM. The four diets were control and fat supplementation (32 g fat kg?1 diet DM) as roasted soya beans, calcium salts of palm oil fatty acids (Megalac®). or hydrogenated tallow (Alifet®). Cows fed supplemental fat as roasted soya beans. Megalac®. or Alifet® produced 33.8, 32.6, and 32.5 kg day?1 of 3.5% FCM. respectively, compared with 31.6 kg day?1 with no fat supplementation. Addition of fat decreased milk protein percentage. Milk fat percentage was increased with Megalac® and decreased with Alifet® feeding. Dietary fat decreased the proportion of short- and medium-chain fatty acids (C6-C14:0) in milk and increased the proportion of long-chain fatty acids (C16 : 0 and longer). Roasted soya beans were most effective in reducing C16 : 0 and increasing C18 : 1, C18 : 2 and C18 : 3 acids in milk fat. Megalac® did not decrease milk C16 : 0 content, and neither Megalac® nor Alifet® affected C18 : 2 content.  相似文献   

4.
The effects of fat supplements that differed in fatty acid composition (chain length and degree of saturation) and chemical form (free fatty acids, Ca salts of fatty acids, and triacylglyceride) on digestible energy (DE) concentration of the diet and DE intake by lactating cows were measured. Holstein cows were fed a control diet [2.9% of dry matter (DM) as long-chain fatty acids] or 1 of 3 diets with 3% added fatty acids (that mainly replaced starch). The 3 fat supplements were (1) mostly saturated (C18:0) free fatty acids (SFA), (2) Ca-salts of fatty acids (CaFA), and (3) triacylglyceride high in C16:0 fatty acids (TAG). Cows fed CaFA (22.8 kg/d) consumed less DM than cows fed the control (23.6 kg/d) and TAG (23.8 kg/d) diets but similar to cows fed SFA (23.2 kg/d). Cows fed fat produced more fat-corrected milk than cows fed the control diet (38.2 vs. 41.1 kg/d), mostly because of increased milk fat percentage. No differences in yields of milk or milk components were observed among the fat-supplemented diets. Digestibility of DM, energy, carbohydrate fractions, and protein did not differ between diets. Digestibility of long-chain fatty acids was greatest for the CaFA diet (76.3%), intermediate for the control and SFA diets (70.3%), and least for the TAG diet (63.3%). Fat-supplemented diets had more DE (2.93 Mcal/kg) than the control diet (2.83 Mcal/kg), and DE intake by cows fed supplemented diets was 1.6 Mcal/d greater than by cows fed the control, but no differences were observed among the supplements. Because the inclusion rate of supplemental fats is typically low, large differences in fatty acid digestibility may not translate into altered DE intake because of small differences in DM intake or digestibility of other nutrients.  相似文献   

5.
Extruded oilseeds were fed to 24 dairy cows to study the influence on the conjugated linoleic acid content of milk and cheese. Cows were fed one of three diets that contained forage and grain in a ratio of 47:53. A control diet containing 13.5% soybean meal was compared with diets containing 12% full fat extruded soybeans or 12% full fat extruded cottonseed. The control, extruded soybean, and extruded cottonseed diets contained 2.73, 4.89, and 4.56% fatty acids, respectively. Measurements were made during the last 5 wk of the 8-wk experiment. The DM intakes and 3.5% fat-corrected milk yields were higher for cows fed the extruded soybean and extruded cottonseed diets than for cows fed the control diet. A tendency for lower fat and protein contents in the milk of cows fed the extruded soybean and extruded cottonseed diets was detected. Most of the C18 fatty acids were increased in the milk and cheese when extruded soybeans and cottonseeds were fed. The conjugated linoleic acid content in milk and cheese increased a mean of 109% when full fat extruded soybeans were fed and increased 77% when cottonseeds were fed compared with the conjugated linoleic acid content when the control diet was fed. Processing the milk into cheese did not alter the conjugated linoleic acid content. The conjugated linoleic acid content of milk and cheese can be increased by the inclusion of full fat extruded soybeans and full fat extruded cottonseeds in the diets of dairy cows.  相似文献   

6.
Twenty dairy cows in early lactation were assigned to one of two dietary treatment groups based on milk production and days in milk. Treatments were a total mixed ration containing 13.2% whole cottonseed on a DM basis with or without added Ca salts of long-chain fatty acids. Treatments were fed ad libitum for 11 wk. Dry matter intake and body weight were not affected by treatment. The addition of Ca salts of long-chain fatty acids had no effect on yield of actual and FCM. Percent milk fat, lactose, and SCC did not differ between treatments. Percent milk protein tended to be lower for cows fed the diet containing calcium salts of long-chain fatty acids. Milk production efficiencies and NDF and ADF digestibilities were unaffected by treatment. Results indicate that diets containing high amounts of cottonseed may mask th affects of energy provided by Ca salts of long-chain fatty acids.  相似文献   

7.
Twenty multiparous Holstein cows were used in a 16-wk trial. A block of 10 cows received a control diet, based on corn silage, and the other block of 10 cows successively received four diets with 1) an extruded blend of canola meal and canola seeds, 2) canola meal and whole canola seeds, 3) canola meal and ground canola seeds, or 4) canola meal and calcium salts of canola oil fatty acids. Canola fat represented about 2% of dietary dry matter. Compared to control cows, treated cows had similar dry matter intake, milk production, and daily milk output of true protein or fat. Protein contents of milk was decreased by all treatments, with a lower effect of extruded or whole canola seeds. Milk fat contents was lowered by all treatments, extruded seeds and calcium salts resulting in most important effects. All treatments lowered the percentage of fatty acids with 12 to 16 carbons in milk fat, increased C18:0 and cis-C18:1 percentages, and the proportion of liquid fat in butter between 0 and 12 degrees C. Calcium salts and, to a lesser extent extruded seeds, resulted in most important improvements of milk fatty acid profile and butter softness, whereas whole seeds had low effects.  相似文献   

8.
Lactating Holstein cows averaging 193 d postpartum and fitted with rumen cannulae were used in two experiments to investigate the effects of supplementing Ca salts of fatty acids or prilled fatty acids to the diet on fermentation in the rumen, apparent total tract nutrient digestibility, milk production, and milk composition. Cows were fed ad libitum total mixed diets consisting of 45% concentrate and 55% forage. Treatments in Experiment 1 were: 1) control, 2) control plus 680 g/cow per d of Ca salts of fatty acids, 3) control plus 680 g/cow per d of prilled fatty acids, or 4) control plus 907 g/cow per d of prilled fatty acids. Treatments in Experiment 2 were: 1) control, 2) control plus 553 g/cow per d of Ca salts of fatty acids, or 3) control plus 454 g/cow per d of prilled fatty acids. Data suggest that Ca salts of fatty acids and prilled fatty acids are inert in the rumen and do not greatly alter fermentation in the rumen, apparent total tract digestibilities of DM, organic matter, ADF, NDF, and CP, or milk composition when fed at recommended amounts of 3 to 4% of the DM intake. The fact that milk production was not increased in these experiments by feeding Ca salts of fatty acids and prilled fatty acids may be attributed to the use of medium to low producing cows that were past the peak of milk production. Additional experiments are needed to obtain information about feeding these sources of supplemental fat to high producing cows during the early stages of lactation.  相似文献   

9.
Eight multiparous Holstein and four multiparous Brown Swiss (78 +/- 43 DIM) cows were used in a 4 x 4 Latin square with 28-d periods to evaluate if feeding fish oil with a source of linoleic acid (extruded soybeans) would stimulate additional amounts of conjugated linoleic acid in milk. Four treatments consisted of a control diet with a 50:50 ratio of forage to concentrate (DM basis), a control diet with 2% added fat from either menhaden fish oil or extruded soybeans, or a combination of fish oil and extruded soybeans each adding 1% fat. DM intake (24.3, 21.6, 24.5, and 22.5 kg/d, for control, fish oil, extruded soybeans, and combination diets, respectively), milk production (32.1, 29.1,34.6, and 31.1 kg/d), and milk fat content (3.51, 2.79, 3.27, and 3.14%) were lower for cows that consumed either fish oil-containing diet, especially the 2% fish oil diet. The proportion of n-3 fatty acids in milk fat increased similarly among all three fat-supplemented diets. Concentrations of transvaccenic acid (1.00, 4.16, 2.17, and 3.51 g/100 g of fatty acids) and cis-9, trans-11 conjugated linoleic acid (0.60, 2.03, 1.16, and 1.82 g/100 g of fatty acids) in milk fat increased more with fish oil than with extruded soybeans. When fed the combination diet, these fatty acids were approximately 50% higher than expected for Holsteins, whereas concentrations were similar for Brown Swiss compared with feeding each fat source separately. These data indicated that fish oil modifies ruminal or systemic functions, stimulating increased conversion of linoleic acid into transvaccenic and conjugated linoleic acids.  相似文献   

10.
Conjugated linoleic acid (CLA), a naturally occurring anticarcinogen found in dairy products, is a byproduct of incomplete ruminal biohydrogenation of unsaturated fatty acids. Our objective was to determine the effect of nonstructural carbohydrate sources, addition of full fat extruded soybeans as a source of unsaturated fatty acids, and possible interactions on the milk fat content of CLA. Cows (n = 20) were assigned to a 4 x 4 Latin square involving two sources of nonstructural carbohydrate, high starch (corn) or high pectin (citrus pulp), with or without addition of extruded soybeans. Milk yield was not affected by nonstructural carbohydrate source, but milk production was increased by 7.8 to 10.5% with dietary additions of extruded soybeans. Milk fat content did not differ between treatments, but fatty acid composition was affected. Cows fed extruded soybean diets had reduced concentrations of C8 to C16 fatty acids and increased concentrations of octadecenoic acids. Diets with extruded soybeans also resulted in more than a doubling in milk fat concentration and yield of CLA. Nonstructural carbohydrate source had only minor effects on CLA, and there was no interaction with extruded soybeans. Milk fat content of trans-C18:1 and CLA were closely related (r2 = 0.77). However, variation among cows was about threefold for each of the diets and rank order of individual cows differed among diets. Overall, we demonstrated that diet modification can be used to alter CLA content of milk fat, but there was substantial individual cow variation for all diets.  相似文献   

11.
Thirteen treatments to compare effects of dietary fat on milk yield and composition were control, 15% whole cottonseed, and 2 and 4% Ca-tallowate factorially distributed in low forage (35% corn silage DM) with 14 or 18% CP and high forage (66% corn silage) diets with an additional diet of 8% Ca-tallowate. Different treatments were fed to 36 cows in each of three 28-d periods. Feeding 2 and 4% Ca-tallowate improved milk yield with high forage, although DM intake was slightly depressed; compared with 4% Ca-tallowate, DM intake and milk yield were depressed by 8% Ca-tallowate. Across all diets, whole cottonseed depressed DM intake and milk yield more than when nearly equal fat came from Ca-tallowate (4%). Calcium-tallowate depressed milk fat percentage linearly. Milk fat from cows fed whole cottonseed or Ca-tallowate contained unsaturated fatty acids (mostly C18:1) and lesser quantities of short-chain fatty acids. In a subsequent experiment, Ca-tallowate depressed milk fat percentage, whereas Megalac (calcium salts of fatty acids from palm oil) did not. In a field study, one trial with 210 cows in midlactation showed no effect on milk yield and composition from .54 kg of Megalac/d for 60 d, nor was there any effect detected with 121 cows in early lactation from feeding of .45 kg of Megalac/d for 90 d.  相似文献   

12.
Four lactating Holstein cows fitted with ruminal and duodenal cannulas were used in a 4 x 4 Latin square design to determine the effects of feeding micronized and extruded flaxseed on milk composition and blood profile in late lactation. Four diets were formulated: a control (C) diet with no flaxseed, a raw flaxseed (RF) diet, a micronized flaxseed (MF) diet, and an extruded flaxseed (EF) diet. Flaxseed diets contained 12.6% flax-seed (dry matter basis). Experimental periods consisted of 21 d of diet adaptation and 7 d of data collection. Feeding flaxseed reduced milk yield and energy-corrected milk by 1.8 and 1.4 kg/d, respectively. Yields of milk protein and casein were also lower for cows fed flaxseed diets than for those fed the C diet. Milk yield (1.6 kg/d) and milk fat percentage (0.4 percentage unit) were lower for cows fed EF than those fed MF. Plasma cholesterol and nonesterified fatty acid concentrations were higher for cows fed flaxseed diets relative to those fed the C diet. Flaxseed supplementation decreased plasma concentrations of medium-chain (MCFA) and saturated (SFA) fatty acids and increased concentrations of long-chain (LCFA) and monounsaturated fatty acids. Feeding flaxseed reduced the concentrations of short-chain fatty acids (SCFA), MCFA, and SFA in milk fat. Consequently, concentrations of LCFA and unsaturated fatty acids were higher for cows fed flaxseed diets than for those fed the C diet. Flaxseed supplementation increased average concentrations of C(18:3) and conjugated linoleic acid by 152 and 68%, respectively. Micronization increased C(18:3) level, and extrusion reduced concentrations of SCFA and SFA in milk. It was concluded that feeding raw or heated flaxseed to dairy cows alters blood and milk fatty acid composition. Feeding extruded flaxseed relative to raw or micronized flaxseed had negative effects on milk yield and milk composition.  相似文献   

13.
Twelve multiparous Holstein cows averaging 65 (33 to 122) DIM were used in a 4 x 4 Latin square for 4-wk periods to determine whether feeding fish oil as fish meal would stimulate increased amounts of milk conjugated linoleic acid (cis-9, trans-11 C18:2; CLA) and transvaccenic acid (trans-11 C18:1; TVA) when the cows were fed extruded soybeans to supply additional linoleic acid. Treatment diets were 1) control; 2) 0.5% fish oil from fish meal; 3) 2.5% soybean oil from extruded soybeans; and 4) 0.5% fish oil from fish meal and 2% soybean oil from extruded soybeans. Diets were formulated to contain 18% crude protein and were composed (dry basis) of 50% concentrate mix, 25% corn silage, and 25% alfalfa hay. Intake of DM was not affected by diet. Milk production was increased by diets 2, 3, and 4 compared with diet 1 (control). Milk fat and milk protein percentages decreased with diets 3 and 4. Milk fat yield was not affected by treatments, but yield of milk protein was increased with supplemental fish meal and extruded soybeans or their blend. When diets 2, 3, or 4 were fed, concentrations of cis-9, trans-11 CLA in milk fat increased by 0.4-, 1.4-, and 3.2-fold, and TVA concentrations in milk fat increased by 0.4-, 1.8-, and 3.5-fold compared with the control milk fat. Increases in TVA and cis-9, trans-11 CLA were 91 to 109% greater when a blend of fish meal and extruded soybeans was fed than the additive effect of fish meal and extruded soybeans. This suggested that fish oil increased the production of CLA and TVA from other dietary sources of linoleic acid such as extruded soybeans.  相似文献   

14.
Total mixed rations containing 31 or 25% NDF were supplemented with 0 or .5 kg/cow per d Ca salts of fatty acids to study the effect of adding Ca salts of fatty acids to diets that differed in NDF content. Rations were fed for ad libitum intake to 12 early to midlactation Holstein cows in a replicated 4 x 4 Latin square design with a 2 x 2 factorial arrangement of treatments. No significant interactions were detected between Ca salts of fatty acids and ration NDF content. The Ca salts of fatty acids lowered milk protein percentage. Cows increased yield of milk, fat, and 4% FCM when they were fed Ca salts of fatty acids. Intake of DM and NE1 increased when NDF was 25% rather than 31% of the total mixed ration. Milk from cows fed 25% NDF contained less fat and more protein. Yields of milk, fat, protein, and 4% FCM increased when diets contained 25% NDF. Conversion of DM intake to 4% FCM, however, decreased. Apparent digestibility of DM increased when diets contained 25% compared with 31% NDF. In this study, Ca salts of fatty acids increased yields of milk and 4% FCM, regardless of ration NDF content. Production increased but efficiency decreased when diets contained 25% vs. 31% NDF.  相似文献   

15.
The objective of this study was to investigate the effects of tallow and choice white grease (CWG) fed at 0, 2, and 4% of the diet dry matter (DM) on rumen fermentation and performance of dairy cows when corn silage is the sole forage source. Fifteen midlactation Holstein cows were used in a replicated 5 x 5 Latin square design with 21-d periods. Treatments were 0% fat (control), 2% tallow, 2% CWG, 4% tallow, and 4% CWG (DM basis). The forage:concentrate ratio was 50:50, and diets were formulated to contain 18% crude protein and 32% neutral detergent fiber (DM basis). Cows were allowed ad libitum consumption of diets fed twice daily as total mixed rations. Cows fed supplemental fat had lower DM intake and produced less milk and milk fat than cows fed the control diet. Feeding 4% fat reduced milk production and milk fat yield relative to feeding 2% fat. Treatments had little effect on the concentration of trans-octadecenoic acids in milk fat. Total trans fatty acids were poorly related to changes in milk fat percentage. Ruminal pH and total volatile fatty acids concentration were not affected by supplemental fat. The acetate:propionate ratio, NH3-N, and numbers of protozoa in the rumen were significantly decreased when fat was added to the diets. Source of dietary fat did not affect rumen parameters. There was no treatment effect on in situ corn silage DM and neutral detergent fiber disappearance. Including fat in corn silage-based diets had negative effects on milk production and rumen fermentation regardless of the source or level of supplemental fat.  相似文献   

16.
Forty multiparous Holstein cows were assigned to one of four treatments 15 d postpartum according to milk yield during wk 2 postpartum to examine the effects of supplementing niacin, Ca salts of long-chain fatty acids, and their interaction. Treatments were control, niacin (12 g/d), Ca salts of long-chain fatty acids (3% of dietary DM), or a combination of niacin and Ca salts. On d 99 postpartum, all cows were fed the control treatment for 2 wk to evaluate residual effects. Milk and FCM yields, blood plasma NEFA and beta-hydroxybutyrate concentrations, and apparent total tract hemicellulose digestibility were increased; milk protein percentage, milk SNF percentage, and blood plasma glucose concentrations were reduced by treatments containing the Ca soaps. Niacin supplementation increased milk protein content and yield but reduced blood plasma beta-hydroxybutyrate concentration. During the residual period, in which all cows received the control treatment, milk yield and plasma NEFA concentration remained elevated, milk protein and SNF contents remained depressed, and milk fat content was reduced for cows previously supplemented with Ca salts of long-chain fatty acids. Methionine and phenylalanine uptakes by the mammary gland were enhanced by niacin supplementation. Results indicated that dairy cattle in early lactation yielded more milk when their diets were supplemented with Ca salts of long-chain fatty acids and that niacin supplementation increased milk protein content and yield.  相似文献   

17.
The NEL of calcium salts of long-chain fatty acids from palm oil was determined in mature Holstein cows. Twelve lactating (fed for ad libitum intake) and six nonlactating (restricted to near maintenance intake) Holstein cows were fed 0 or 2.95% fat supplement in diets formulated to contain 16 or 20% CP in a 2 x 2 factorial arrangement of treatments in a single reversal design within protein level. The fat supplement was substituted for ground corn and minerals. Two 6-d total collection balance trials were conducted during which cows were in open circuit respiration chambers. Intake of OM was lower for lactating cows fed the fat supplement (18.1 vs. 19.1 kg/d), but energy intake did not differ (93.2 Mcal/d). Total long-chain fatty acid intake was increased from 477 to 820 g/d with fat feeding. Apparent digestibility of long-chain fatty acids was increased 11.1 percentage units with increased dietary CP for lactating cows with no difference in fatty acid digestibility for the dry cows. Milk yield was higher (34.3 vs. 32.0 kg/d) with fat feeding, but milk energy yield did not differ (22.6 Mcal/d). The NEL of the fat supplement was estimated from the incremental differences in energy values within cows, assuming NEL of corn replaced by fat to be 1.96 Mcal/kg DM, and was determined to be 6.52 Mcal/kg DM (SE = 1.74). The efficiency of the use of metabolizable energy for lactation from dietary fat was 77.2%. The energy in calcium salts of long-chain fatty acids is utilized efficiently for lactation in mature cows.  相似文献   

18.
《Journal of dairy science》1988,71(8):2143-2150
Digestibility and production responses to feeding Ca salts of fatty acids were determined in lactating cows. Cows 120 d in milk were fed 4% of DM as Ca salts of fatty acids using chromium oxide mordanted corn silage as unabsorbed reference substance. Digestion of DM and N did not change, fatty acid digestion increased, and Ca percentage absorption decreased. Milk and milk fat production were enhanced.In production experiments in Pennsylvania, cows in early lactation were fed 54% of total diet as roughage and .45 kg/d Ca salts of fatty acids. Milk increased by 4% and FCM by 6%. Plasma somatotropin decreased, and insulin was not changed. In similar experiments in Israel with 31% of total diet as roughage, feeding .5 kg/d Ca salts of fatty acids to cows following parturition enhanced milk by 5% and FCM by 9.5%. The production increment of Ca salts of fatty acids decreased following peak lactation. No after effects of feeding Ca salts were observed. Body weight changes and rumen VFA were similar, whereas DM intake was .9 kg less and plasma FFA decreased with feeding Ca salts. It is concluded that inclusion of Ca salts of fatty acids in early lactation enhances production of milk and FCM.  相似文献   

19.
It is well established in the literature that feeding free vegetable oils rich in oleic acid results in greater milk fat secretion than does feeding linoleic-rich oils. The objectives of these experiments were to analyze the effects of oleic and linoleic acid when fed in the form of full-fat soybeans and the interaction between soybean particle size and fatty acid (FA) profile. Soybeans were included in diets on an iso-ether extract basis and diets were balanced for crude protein using soybean meal. Experiment 1 used 63 cows (28 primiparous, PP; 35 multiparous, MP) housed in a freestall barn with Insentec roughage intake control gates (Marknesse, the Netherlands). Cows were divided into 4 mixed parity groups within the same pen. Two groups were assigned to each of the 2 diets: whole raw Plenish (WP, high oleic; Dupont-Pioneer, Johnston, IA) soybeans or whole raw conventional (WC, high linoleic) soybeans. The MP cows exhibited significantly increased milk fat yield on the WP diet compared with the WC diet. A significantly greater C18 milk FA yield by the MP cows fed WP was observed compared with those fed WC, but no difference was present in the C16 or short-chain FA yield. No effects were seen in the PP cows. Experiment 2 used 20 cows (10 PP, 10 MP) in 2 balanced 5 × 5 Latin squares within parity. Cows received 5 diets: raw WP and WC diets, raw ground Plenish and conventional soybean diets (GP and GC, respectively), and a low fat control. A significant benefit was found for the GP diet compared with the GC diet for milk fat concentration and yield. In experiment 2, no difference was observed between cows fed the WP compared with the WC diet. In experiment 2, cows consuming the Plenish diets produced less milk than when consuming the conventional soybean diets. The soybean diets resulted in significantly more C18 and less <C18 FA compared with the low fat diet. The GP diet resulted in significantly more C18 FA than the GC diet and the ground soybeans resulted in less C16 FA compared with whole soybeans. In both experiments, cows fed the Plenish diets exhibited decreased trans-10 18:1, a FA often increased during milk fat depression, compared with those fed the conventional soybean diets, though differences were not observed in trans-10,cis-12 conjugated linoleic acid. These results indicate that feeding whole soybeans rich in oleic acid may result in some increased milk fat secretion compared with conventional whole soybeans containing high levels of linoleic acid. This advantage is clear for ground high-oleic soybeans compared with ground conventional soybeans.  相似文献   

20.
Fatty acid profiles with emphasis on linoleic, linolenic, oleic, and conjugated linoleic acid (CLA) were compared in milk from dairy cows fed diets containing 3.25% supplemental fat and a control diet containing no supplemented fat. The fat was supplied by either whole ground solin, flax, or canola oilseed. Solin (linola) is a new cultivar of flax that contains 28% linoleic acid in the seed, Twelve multiparous Holstein cows were assigned to one of four dietary treatments. The experimental design was a 4 x 4 Latin square with each period consisting of 16 d for adjustment to the diet followed by a 5-d sampling period. Feed intake, milk yield, milk fat yield, and milk fat percentage were not affected by treatment. Adding solin, flax, or canola oilseed to lactation diets produced the highest proportions of linoleic (C18:2), linolenic (C18:3), and oleic (C18:1) acids, respectively, in the lipid fraction of the milk of the cows consuming these diets. The proportions of C6:0 to C16:1 were depressed in the milk fat of cows fed the oilseed diets, compared with the control diet. Increasing the lactation diet levels of C18:2, by using different oilseeds, increased CLA to 1.5% of milk fatty acids. The content of CLA in milk fatty acids, however, did not increase with the solin-supplemented diet compared with the canola-supplemented diet even though the C18:2 level was higher in the former diet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号