共查询到18条相似文献,搜索用时 62 毫秒
1.
多传感器信息融合在移动机器人定位中的应用 总被引:7,自引:1,他引:7
机器人自定位是实现自主导航的关键问题之一。为了满足机器人在导航时精确定位的要求,提出一种基于多传感器信息融合的自定位算法。根据对机器人运动机构的分析和运动机构间的刚体约束,建立起机器人的运动学模型;由传感器的工作原理建立里程计和超声波传感器的观测模型;利用扩展卡尔曼滤波(EKF)算法将里程计和超声波传感器采集的数据进行融合;最后,由匹配的环境特征对机器人的位置进行修正,得到精确的位置估计。实验结果表明:该算法明显地消除了里程计的累计误差,有效地提高了定位精度。 相似文献
2.
3.
4.
采用单类、单一传感器很难获得移动机器人的准确定位.为此,运用异质传感器信息融合来提高定位精度.首先,建立机器人运动方程和CCD摄像机观测模型.然后,利用扩展卡尔曼滤波器进行状态估计,选择Q,R矩阵抑制系统的模型噪声和量测噪声,并实现移动机器人的自定位.接着,建立超声波传感器的观测模型,获得机器人的自定位信息.最后,运用BP神经网络,将两种自定位信息进行融合,实现两类传感器的优缺点互补.仿真实验表明,运用异质传感器信息融合能明显地提高移动机器人的自定位精度. 相似文献
5.
针对移动机器人在室外环境下全局位姿定位精度低、定位耗时长的问题,提出一种基于多传感器融合的机器人定位算法。首先构建移动机器人的运动模型,并选用里程计、惯性测量单元IMU和激光雷达作为移动机器人的基础传感器;然后采用自适应蒙特卡罗定位算法对传感器融合位姿进行位姿误差计算,获取移动机器人初始位姿;最后进行激光点云匹配,获取全局地图,并利用基于全局正态分布地图的NDT算法进行初始位姿修正,最终实现全局位姿校正和高精度定位。结果表明,基于多传感器融合的移动机器人定位误差控制在0.04 m范围内,定位时长均值为0.045 s,定位误差较小,定位损耗时间较少。由此说明,本定位算法可提升移动机器人的定位精度和定位效率,可实现移动机器人全局位姿快速、精确定位,提出的定位算法具备一定的有效性。 相似文献
6.
基于多传感器信息融合的斜面移动机器人定位新方法 总被引:5,自引:1,他引:5
首先分析了本文的研究意义;然后针对在斜面
上工作的轮式移动机器人,提出了通过卡尔曼滤波融合倾斜角传感器和码盘传感器信息的移
动机器人定位新方法;最后进行了斜面定位试验.试验结果证实了本文定位方法的有效性. 相似文献
7.
介绍了多传感器信息融合的基本原理,给出了基于多传感器信息融合的移动机器人导航系统结构。建立了移动机器人数学模型,运用基于扩展卡尔曼滤波的信息融合方法实现了移动机器人导航算法。通过实验验证了基于多传感器信息融合的移动机器人导航系统和导航算法的有效性。 相似文献
8.
基于多传感器信息融合的移动机器人快速精确自定位 总被引:2,自引:1,他引:2
通过分析全向视觉、电子罗盘和里程计等传感器的感知模型,设计并实现了一种给定环境模型下移动机器人全局自定位算法.该算法利用蒙特卡罗粒子滤波,融合多个传感器在不同观测点获取的观测数据完成机器人自定位.与传统的、采用单一传感器自定位的方法相比,它把多个同质或异质传感器所提供的不完整测量及相关联数据库中的信息加以综合,降低单个... 相似文献
9.
10.
为了更好地解决移动机器人在未知环境下的自主避障问题,采用多传感器信息融合的方法,通过多个超声传感器对障碍物信息进行采集。合理确立模糊控制器的输入输出,通过模糊推理将障碍物距离信息模糊化,建立模糊规则并解模糊,以达到对移动机器人的安全避障的控制。通过建立移动机器人运动模型,设计了仿真平台,得到实验结果表明:该算法具有良好的可行性。 相似文献
11.
采用双重采样的移动机器人Monte Carlo定位方法 总被引:2,自引:0,他引:2
移动机器人Monte Carlo定位效率受限于大量粒子的权值更新运算. 本文提出一种实现粒子集规模自适应调整的双重采样方法: 第一层基于粒子权重的固定粒子数重采样, 有效减轻粒子权值退化并保证预测阶段粒子多样性; 第二层粒子稀疏化聚合重采样, 基于粒子空间分布合理性将粒子加权聚合, 从而减少参与权值更新粒子数. 该方法通过提高粒子预测能力保证滤波精度, 通过减少权值更新运算提高了粒子滤波效率. 仿真实验表明, 双重采样方法能够有效实现粒子集规模自适应调整,采用双重采样的移动机器人Monte Carlo定位方法是高效、鲁棒的. 相似文献
12.
移动机器人的改进无迹粒子滤波蒙特卡罗定位算法 总被引:1,自引:0,他引:1
粒子滤波是移动机器人蒙特卡罗定位(Monte Carlo localization, MCL)的核心环节. 首先, 针对粒子滤波过程的粒子退化问题, 利用迭代Sigma点卡尔曼滤波来精确设计粒子滤波器的提议分布, 以迭代更新方式将当前观测信息融入顺序重要性采样过程, 提出IUPF (Improved unscented particle filter)算法. 然后, 将IUPF与移动机器人MCL相结合, 给出IUPF-MCL定位算法的实现细节. 仿真结果表明, IUPF-MCL是一种精确鲁棒的移动机器人定位算法. 相似文献
13.
自适应扩展卡尔曼滤波器在移动机器人定位中的应用 总被引:1,自引:0,他引:1
针对移动机器人定位过程中存在的误差积累问题,提出了采用自适应扩展卡尔曼滤波算法(AEKF).分析了扩展卡尔曼滤波(EKF)和AEKF两种算法, AEKF取采样时刻的各项泰勒级数,并利用Sage-Husa时变噪声估计器实时估计观测噪声,克服了线性化误差,增强了环境适应性;同时,对AEKF的收敛性及运算复杂度进行分析,并结合算法实验表明AEKF具有良好的速度精度综合性价比;最后对比分析两种算法实现机器人定位的效果并实验完成误差对比.结果表明AEKF具有更优的定位性能. 相似文献
14.
基于粒子滤波器的移动机器人定位和地图创建研究进展 总被引:2,自引:0,他引:2
首先,对粒子滤波器的原理和研究进展进行了综述.然后,介绍了基于粒子滤波器的移动机器人定位研究进展.其次,给出了粒子滤波器在移动机器人地图创建领域的最新成果.最后,对粒子滤波器在移动机器人研究领域的未来发展方向进行了展望. 相似文献
15.
16.
移动机器人基于激光测距和单目视觉的室内同时定位和地图构建 总被引:16,自引:1,他引:16
该文研究了部分结构化室内环境中自主移动机器人同时定位和地图构建问题.基于激光和视觉传感器模型的不同,加权最小二乘拟合方法和非局部最大抑制算法被分别用于提取二维水平环境特征和垂直物体边缘.为完成移动机器人在缺少先验地图支持的室内环境中的自主导航任务,该文提出了同时进行扩展卡尔曼滤波定位和构建具有不确定性描述的二维几何地图的具体方法.通过对于SmartROB-2移动机器人平台所获得的实验结果和数据的分析讨论,论证了所提出方法的有效性和实用性. 相似文献
17.
室内移动机器人的视觉定位方法研究 总被引:6,自引:1,他引:6
针对地图未知的室内环境下的定位问题,提出了一种基于特征跟踪的视觉里程计方法.利用单目摄像头提取和跟踪环境特征点集,进而根据观测模型利用扩展卡尔曼滤波算法估算出机器人的位姿.办公室环境中的定位实验证明了方法的有效性. 相似文献
18.
针对里程计在定位过程中存在累积误差的问题,建立了一种通用的移动机器人里程计误差模型,对里程计误差进行实时反馈补偿.在利用激光雷达进行环境特征提取过程中,根据激光雷达原始数据存在的误差,建立了激光雷达的观测误差模型,并根据环境特征和机器人的相对位置关系,建立了移动机器人观测模型.最后,结合里程计和激光雷达误差模型,利用扩展卡尔曼滤波(EKF)实现了基于环境特征跟踪的移动机器人定位.实验结果验证了里程计和激光雷达误差模型的引入,在增加较短定位时间的情况下,可以有效地提高移动机器人的定位精度. 相似文献