首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
In this study, artificial neural networks (ANNs) was used for modeling the effects of machinability on chip removal cutting parameters for face milling of stellite 6 in asymmetric milling processes. Cutting forces with three axes (Fx, Fy and Fz) were predicted by changing cutting speed (Vc), feed rate (f) and depth of cut (ap) under dry conditions. Experimental studies were carried out to obtain training and test data and scaled conjugate gradient (SCG) feed-forward back-propagation algorithm was used in the networks. Main parameters for the experiments are the cutting speed (Vc, m/min), feed rate (f, mm/min), depth of cut (ap, mm) and cutting forces (Fx, Fy and Fz, N). Vc, f and ap were used as the input dataset while Fx, Fy and Fz were used as the output dataset. Average percentage error (APEs) values for Fx, Fy and Fz using the proposed model were obtained around 2 and 10% for training and testing, respectively. These results show that the ANNs can be used for predicting the effects of machinability on chip removal cutting parameters for face milling of stellite 6 in asymmetric milling processes.  相似文献   

2.
The flow stress data, determined in Part I of the present study, is validated by using it as an input to the finite element method and analytical based computer programs to predict process variables in metal cutting. The predicted process variables in two-dimensional orthogonal turning and three-dimensional face milling operations, are compared with the published experimental data and the results of experiments conducted in the present work. The majority of the predictions have been found to be in reasonable agreement with the measured results. The comparisons have been discussed and, in the case of unsatisfactory agreement, the reasons for inaccurate predictions are reviewed. The flow stress data of AISI H13 tool steel (46 HRC), determined in Part I is used in this study to investigate the influence of edge preparation on forces in the cutting and feed directions, tool stresses and cutting temperatures. It has been concluded that the hone-radius edge with a hone radius of 0.1 mm provides the maximum resistance to chipping and the chamfered edge (20°×0.1 mm) has the minimum flank and crater wears for the conditions used in the present study.  相似文献   

3.
A series of LaxCeyO1 − x − y films (x = 0–0.54, y = 0–0.58) with thickness of 35–45 nm was deposited by unbalanced magnetron sputtering. High-resolution transmission electron microscope observation shows that La0.24Ce0.34O0.42 film has polycrystalline structure. La2O3 and CeO2 are formed within the LaxCeyO1 − x − y films confirmed by the X-ray diffraction and X-ray photoelectron microscopy. The friction coefficient and residual compressive stress of five kinds of three-element compound films exhibit symmetric distribution with the relative equilibrium of La and Ce atomic concentration within the films. The critical load of all deposited films is between 28 and 33 mN. The friction coefficient of two kinds of rare earth complex oxide films is in the range of 0.08–0.09, which is lower than that of only one kind of rare earth oxide films, and the friction mechanism is discussed.  相似文献   

4.
This paper is concerned with the experimental and numerical study of face milling of Ti-6Al-4 V titanium alloy. Machining is carried out by uncoated carbide cutters in the presence of an abundant supply of coolant. Experimental analysis is conducted by focusing on the measurement of specific cutting energy, surface integrity and tool performance. The experimental analysis is supplemented by simulations from a 3D finite element model (FEM) of face milling simulation where needed. A tool wear model parameterized from FEM predictions of the tool-chip interface temperature, contact stress and chip velocity is presented. Tool wear patterns are described in terms of various cutting conditions and the influence of tool wear on surface integrity is investigated. Tool wear predictions based on the 3D FEM simulation show good agreement with experimental tool wear measurements. The highest cutting speed realized for the cutting tool material is 182.9 m/min (600 sfpm). Good surface integrity in terms of favorable residual stress and surface finish is achieved under the machining conditions used with limited tool wear. Residual stresses imparted to the machined surface are shown to be compressive.  相似文献   

5.
Two-layered cutting tool tips with thin sintered carbide plates on the rake faces are introduced as a means to significantly reduce tungsten consumption in cutting tools as a response to the sharp and manifold rise of global tungsten raw material prices. The objective of this study is investigation of factors leading to premature failure of the two-layered cutting tool tips as compared to homogeneous sintered carbide tips. Cutting tests were performed and the effects of coolant, thin sintered carbide plate material type and its thickness on stress state and fracture are discussed. It was established that the absence of coolant, as well as, higher Young's modulus and less thickness of the thin sintered carbide plate results in higher stresses on the tip's rake face, leading to its premature failure.  相似文献   

6.
Thermal modeling for white layer predictions in finish hard turning   总被引:3,自引:0,他引:3  
Part thermal damage is a process limitation in finish hard turning and understanding process parameter effects, especially, tool wear, on cutting temperatures is fundamental for process modeling and optimization. This study develops an analytical model for cutting temperature predictions, in particular, at the machined-surfaces, in finish hard turning by either a new or worn tool.A mechanistic model is employed to estimate the chip formation forces. Wear-land forces are modeled using an approach that assumes linear growth of plastic zone on the wear-land and quadratic decay of stresses in elastic contact. Machining forces and geometric characteristics, i.e. shear plane, chip–tool contact, and flank wear-land, approximate the heat intensity and dimensions of the shear plane, rake face, as well as wear-land heat sources. The three heat sources are further discretized into small segments, each treated as an individual rectangular heat source and subsequently used to calculate temperatures using modified moving or stationary heat-source approaches. Temperature rises due to all heat-source segments are superimposed, with proper coordinate transformation, to obtain the final temperature distributions due to the overall heat sources. All heat sources are simultaneously considered to determine heat partition coefficients, both at the rake face and wear-land, and evaluate the final temperature rises due to the combined heat-source effects.Simulation results show that, in new tool cutting, maximum machined-surface temperatures are adversely affected by increasing feed rate and cutting speed, but favorably by increasing depth of cut. In worn tool cutting, flank wear has decisive effects on machined-surface temperatures; the maximum temperature increases 2–3 times from 0 to 0.2 mm wear-land width. White layers (phase-transformed structures) formed at the machined-surfaces have been used to experimentally validate the analytical model by investigating tool nose radius effects on the white layer depth. The experimental results show good agreement with the model predictions.The established model forms a framework for analytical predictions of machined-surface temperatures in finish hard turning that are critical to part surface integrity and can be used to specify a tool life criterion.  相似文献   

7.
Hexagonal ilmenite-type (Zn1−xNix)TiO3 (x = 0, 0.85–1.0) ceramic powders were successfully synthesized by a sol–gel route with low temperature (800 °C) sintering, which was modified by using the two-step heat treatment so as to obtain pure products. The thermal stability of the hexagonal (Zn,Ni)TiO3 was enhanced with the increasing amount of nickel addition. FE-SEM observations demonstrated that the average crystallite sizes of (Zn1−xNix)TiO3 remarkably decreased from more than 200 nm to less than 100 nm with the increasing solubility x. The dielectric properties of (Zn1−xNix)TiO3 were measured at different frequencies and the results showed that there existed maximum values both for the dielectric constants and the loss tangents at x = 0.85.  相似文献   

8.
In this paper, a cutting force model for self-propelled rotary tool (SPRT) cutting force prediction using artificial neural networks (ANN) has been introduced. The basis of this approach is to train and test the ANN model with cutting force samples of SPRT, from which their neurons relations are gradually extracted out. Then, ANN cutting force model is achieved by obtaining all weights for each layer. The inputs to the model consist of cutting velocity V, feed rate f, depth of cut ap and tool inclination angle λ, while the outputs are composed of thrust force Fx, radial force Fy and main cutting force Fz. It significantly reduces the complexity of modeling for SPRT cutting force, and employs non-structure operator parameters more conveniently. Considering the disadvantages of back propagation (BP) such as the convergence to local minima in the error space, developments have been achieved by applying hybrid of genetic algorithm (GA) and BP algorithm hence improve the performance of the ANN model. Validity and efficiency of the model were verified through a variety of SPRT cutting samples from our experiment tested in the cutting force model. The performance of the hybrid of GA–BP cutting force model is fairly satisfactory.  相似文献   

9.
We have carried out measurements of complex ac susceptibility χ=χ′+χ″ as a function of temperature and ac field amplitude on rectangular bar-shaped high-temperature superconductors (HTS) with nominal composition of Bi1.6Pb0.4Sr2(Ca1−xNdx)2Cu3Oδ superconducting samples prepared by the solid-state reaction method. The effect of Nd-substitution on the Bi–(Pb)–Sr–Ca–Cu–O system has been investigated in terms of ac susceptibility study. We estimated the effective volume fraction of the grains and the field dependence of the inter-granular critical current density comparing the maximum of the extracted matrix susceptibility and the corresponding calculated data which was obtained employing the power law critical state model.  相似文献   

10.
Effect of chamfer angle on wear of PCBN cutting tool   总被引:1,自引:0,他引:1  
In precision hard turning, a remaining problem is to minimise tool wear to maintain the accuracy of geometry and surface finish. Tool wear not only directly reduces the part geometry accuracy but also increases cutting forces drastically. The change in the cutting forces also causes instability in the tool motion, which results in more inaccuracy. PCBN cutting tools are often used in hard turning. However, they are still relatively expensive compared to ordinary carbide cutting tools. In order to attain sufficiently high production rates at minimum cost, increase of knowledge on cutting tool geometry is necessary. This article presents a study of the effect of chamfer angle on tool wear of PCBN cutting tool in the super finishing hard turning. The correlation between cutting force, tool wear and tool life were investigated. The optimised chamfer angle for PCBN cutting tool is suggested. Finally, the distribution of stresses and maximum principal stress working on the tool edge were calculated with the use of finite element method.  相似文献   

11.
This paper presents an analysis of the stresses in the workpiece and tool during exit in interrupted cutting with chamfered tools. An elastic-plastic finite element model is developed to examine the stress fields in the workpiece for various chamfer forms and exit angles. Eight different cases are considered. The workpiece material considered is low carbon steel (203.4 N/mm2 yield stress). The geometric conditions considered include cases where the thickness of the cut h1 is rather small (h1 = 0.04 mm) compared to the chamfer width (Lc = 0.2 mm), as well as cases where Lc = h1 = 0.3 mm. Chamfer angles of 5 and 20° are considered, while the exit angle is taken as 60 and 90°. For the various conditions considered, the loads on the tool are obtained and then used to analyze the stresses in the tool nose. An elastic, plane-strain finite element model is developed for the tool with a very fine mesh near the cutting edge. The material of the tool carbide inserts is considered to be homogeneous and isotropic.

The results indicate that the presence of the chamfer does not prevent the dangerous rotation of the workpiece shear angle in the negative direction. For the cases where the thickness of the cut is small compared to the chamfer width (Lc = 5h1), the magnitude of the shear stresses near the cutting edge increases significantly when the chamfer angle is increased from 5 to 20°, and also these stresses reach levels corresponding to the shear flow strength of sintered carbides. For the cases where the thickness of cut is equal to the chamfer width, the results suggest that the build up material which is formed on the chamfer decreases the probability of tensile failure in the tool.  相似文献   


12.
This work is aimed at examining how the tetragonality of ZnxMn3−xO4 spinel structures depends on the chemical composition when ZnxMn3−xO4 is embedded in a metal matrix. The paper focuses on a wide range of ZnxMn3−xO4 precipitates in a Ag matrix with x varying between 0 and 1.5. This variation of x has been obtained by internal oxidation of Ag–2at.%Mn–4at.%Zn in air followed by annealing in vacuo at different temperatures. It will be demonstrated that the Zn concentration x in ZnxMn3−xO4 has a major influence on the interfacial misfit and orientation relation between Ag/ZnxMn3−xO4. The degree of mismatch of 10.4% of 1 1 1 Ag–Mn3O4 and 2.4% of Ag–Zn1.5Mn1.5O4 was visualized using the Bragg filtering technique on HRTEM micrographs of those interfaces. It was possible to identify misfit dislocations qualitatively with this technique at 1 1 1 Ag–ZnxMn3−xO4 interfaces with different degree of mismatch.  相似文献   

13.
M. H. Hong  H. Saka 《Scripta materialia》1997,36(12):1423-1429
1. 1. Two kinds of polycrystalline specimens, which fall in the δ1 single phase of the Bastin et al.'s binary phase diagram of the Fe-Zn system but fall in the δ1K, and the δ1P phases in Ghoniem et al's phase diagram have been prepared. The hardness of the δ1K, phase is higher than that of the δ1P, phase.
2. 2. The density of stacking faults and internal strain in the δ1P phase are higher than that of the 8 Ip phase.
3. 3. Electron di,tkction shows that ordering takes place in δ1K phase, while no ordering takes place in δ1P phase, the lattice parameter of δ1K phase being three times as large as that of δ1P phase.
  相似文献   

14.
We report the stress relaxation behavior of arc-evaporated TiCxN1−x thin films during isothermal annealing between 350 and 900°C. Films with x=0, 0.15, and 0.45, each having an initial compressive intrinsic stress σint=−5.4 GPa, were deposited by varying the substrate bias Vs and the gas composition. Annealing above the deposition temperature leads to a steep decrease in the magnitude of σint to a saturation stress value, which is a function of the annealing temperature. The corresponding apparent activation energies for stress relaxation are Ea=2.4, 2.9, and 3.1 eV, for x=0, 0.15, and 0.45, respectively. TiC0.45N0.55 films with a lower initial stress σint=−3 GPa, obtained using a high substrate bias, show a higher activation energy Ea=4.2 eV. In all the films, stress relaxation is accompanied by a decrease in defect density indicated by the decreased width of X-ray diffraction peaks and decreased strain contrast in transmission electron micrographs. Correlation of these results with film hardness and microstructure measurements indicates that the stress relaxation is a result of point-defect annihilation taking place both during short-lived metal-ion surface collision cascades during deposition, and during post-deposition annealing by thermally activated processes. The difference in Ea for the films of the same composition deposited at different Vs suggests the existence of different types of point-defect configurations and recombination mechanisms.  相似文献   

15.
The surface integrity of machined components is defined by several characteristics, of which residual stress is extremely important. Residual stress is known to have an effect on critical mechanical properties such as fatigue life, corrosion cracking resistance, and dimensional tolerance of machined components. Among the factors that affect residual stress in machined parts are cutting parameters and tool geometry. This paper presents a method of modeling residual stress for hone-edge cutting tools in turning. The model utilizes analytical cutting force models in conjunction with an approximate algorithm for elastic–plastic rolling/sliding contact. Oxley’s cutting force model is coupled with a slip line model proposed by Waldorf to estimate the cutting forces, which are in turn used to estimate the stress distribution between the tool and the workpiece. A rolling/sliding contact model, which captures kinematic hardening, is used to predict the machining residual stresses. Additionally, a moving heat source model is applied to determine the temperature rise in the workpiece due to the cutting forces. The model predictions are compared with experimental data for the turning of AISI 52100. Force predictions compare well with experimental results. Similarly, the predicted residual stress distributions correlate well with the measured residual stresses in terms of magnitude of stresses and depth of penetration.  相似文献   

16.
Systematic measurements of stress-impedance (SI) have been carried out using Co-rich amorphous ribbons of nominal composition Co71−xFexCr7Si8B14 (x = 0, 2) at various excitation frequencies and bias fields and at room temperature. The impedance, Z(σ) for both the samples was found to be very sensitive functions of applied tensile stresses (up to 100 MPa) exhibiting a maximum SI ratio as much as 80% at low frequency 0.1 MHz. The nature of variation of SI changes with the excitation frequency especially at higher frequencies in MHz region where it exhibits a peak. Magnetization measurements were also performed to observe the effects of applied stresses and magnetization decreased with the application of stress confirming the negative magnetostriction coefficient of both the samples. Both the samples exhibited negative magneto-impedance (MI) when the variation of Z is observed with the applied bias magnetic field, H. The impedance as functions of applied magnetic field, Z(H), decreases with the application of stress thus making the MI curves broader. Maximum MI ratio as large as 99% has been observed for both the samples at low fields 27 Oe.  相似文献   

17.
Atom-probe tomography (APT) and high-resolution transmission electron microscopy are used to study the chemical composition and nanostructural temporal evolution of Al3(Sc1−xZrx) precipitates in an Al–0.09 Sc–0.047 Zr at.% alloy aged at 300 °C. Concentration profiles, via APT, reveal that Sc and Zr partition to Al3(Sc1−xZrx) precipitates and Zr segregates concomitantly to the -Al/Al3(Sc1−xZrx) interface. The Zr concentration in the precipitates increases with increasing aging time, reaching a maximum value of 1.5 at.% at 576 h. The relative Gibbsian interfacial excess of Zr, with respect to Al and Sc, reaches a maximum value of 1.24 ± 0.62 atoms nm−2 after 2412 h. The temporal evolution of Al3(Sc1−xZrx) precipitates is determined by measuring the time dependence of the depletion of the matrix supersaturation of Sc and Zr. The time dependency of the supersaturation of Zr does not follow the asymptotic t−1/3 law while that of Sc does, indicating that a quasi-stationary state is not achieved for both Sc and Zr.  相似文献   

18.
The effects of Cu addition on the β phase formation rate and the thermoelectric power in various FeSi2 and Fe2Si5 based alloys was examined. The peritectoid reaction (a+→β) in FeSi2 alloys was initially enhanced by the addition of Cu but it became slower for longer annealing times. The retained metallic ε was harmful for the thermoelectric power. The inherent thermoelectric properties of (FeSi2)99−XMn1CuX (X=0–1.O at.%), (FeSi2)99−X Co1CuX (X=0–1.0 at.%) alloys were attained after the elimination of ε. In the case of eutectoid reaction (→β+Si). Differential thermal analysis, X-ray diffraction and microscopic observation clearly confirmed that the eutectoid reaction rate was drastically enhanced by the addition of a small amount of Cu and its rate decreased with decreasing Cu content. The rate also depends on the annealing temperature and reached a maximum at about 1073 K for most alloys. The addition of only 0.1 at.% Cu was still very effective even in Mn or Co doped alloys. The thermoelectric power of these alloys increased very quickly with annealing time. Their final values decreased with Cu content and saturated at 0.2 at.% Cu. The value of the 0.1 at.% Cu added alloy was higher than that of both the conventional p- and a-type FeSi2 based alloys. These results suggest that the Fe2Si5 alloys with a small amount of Cu may be attractive as new thermoelectric materials.  相似文献   

19.
Diamond coating tools have been increasingly used for machining advanced materials. Recently, a microwave plasma-assisted chemical vapor deposition (CVD) technology was developed to produce diamond coatings which consist of nano-diamond crystals embedded into a hard amorphous diamond-like carbon matrix. In this study, the nanocrystalline diamond (NCD) coating tools were evaluated in machining high-strength aluminum (Al) alloy. The conventional CVD microcrystalline diamond coating (MCD) tools and PCD tools were also tested for performance comparisons. In addition, stress distributions in diamond coating tools, after deposition and during machining, were analyzed using a 2D finite element (FE) thermomechanical model.

The results show that catastrophic failures, reached in all except one machining conditions, limit the NCD tool life, which is primarily affected by the cutting speed. In addition, coating delamination in the worn NCD tools is clearly evident from scanning electron microscopy (SEM) and force monitoring in machining can capture the delamination incident. At a high feed, coating delamination may extend to the rake face. Furthermore, SEM observations of coating failure boundaries show intimate coating-substrate contact. Though the NCD tools are inferior to the PCD tools, they substantially outperform the MCD tools, which failed by premature delamination. The diamond coating tools can have high residual stresses from the deposition and stresses at the cutting edge are highly augmented. Further machining loading causes the stress reversal pattern which seems to correlate with the tool wear severity.  相似文献   


20.
Structure and magnetic and electrical properties of the polycrystalline compounds LaMn1−xRhxO3 (0 < x ≤ 1) have been investigated. The samples were characterized by X-ray diffraction and Rietveld refinement which confirmed the space group Pnma (No. 62) for all compositions at room temperature. A transformation from O′- to O-type orthorhombic structure is seen near x = 0.6 tending to make the phase unstable. The electrical conductivity measurement shows semiconducting property above room temperature with a rather low activation energy for Mn-rich compositions. Compounds in the region 0.1 ≤ x ≤ 0.9 show ferromagnetic property but the substitution of Rh3+ ion for Mn3+ ion suppresses the ferromagnetism that results in reducing the Curie temperature, TC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号