首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 460 毫秒
1.
The effects of dopamine D1 and D2 receptor antagonists on the reward processes of 10- and 17-day-old rats were assessed using the conditioned place preference paradigm. Conditioning and testing were conducted in a three-compartment chamber, with each end compartment having its own distinct tactile and odor cues (almond and lemon). During six experiments, 10- and 17-day-old rats (age at initial conditioning) were injected intraperitoneally with either saline, the dopamine D1 receptor antagonist R(+/-)-SCH 23390 hydrochloride (0.01-1.0 mg/kg), or the dopamine D2 receptor antagonists (+/-)-sulpiride (1-100 mg/kg) or S(-)-eticlopride hydrochloride (0.1-0.5 mg/kg) 30 min prior to being injected with cocaine hydrochloride (20 mg/kg) or saline. After the latter injections, rats were immediately confined in the lemon-scented (nonpreferred) compartment for 30 min. On the alternate conditioning day, rats were injected with saline and confined in the almond-scented compartment. On the third day (i.e., the test day), rats were given saline and allowed free access to the entire chamber for 15 min. The results showed that the dopamine D1 receptor antagonist SCH 23390 blocked the cocaine-induced place preference conditioning of both 10- and 17-day-old rats. Surprisingly, the dopamine D2 receptor antagonists sulpiride and eticlopride blocked the place preference conditioning of 10-day-old rats, while leaving the 17-day-old rats unaffected. These results indicate that dopamine D1 receptors are critically involved in the reward processes of preweanling rats, but that the importance of dopamine D2 receptors changes across ontogeny.  相似文献   

2.
Behavioral studies were conducted in rats administered a selective D3 agonist, 7-hydroxy-N,N-di-n-propyl-2-aminotetralin (7-OH-DPAT) or 4aR, 10bR-(+)-trans-3,4,4a,10b-tetrahydro-4-propyl-2H,5H-[1] benzopyrano[4,3-b]-1,4-oxazin-9-ol (PD 128907). Both drugs induced disruption of huddling behavior in rats at doses that did not produce hyperlocomotion. The effects of the D3 agonists were dependent upon dosage and time after administration. These results suggest that D3 receptors are concerned with social interaction in rats.  相似文献   

3.
The primary objective of this study was to determine whether the development of behavioral sensitization to the putative dopamine D3 receptor agonist 7-OH-DPAT could be prevented by either selective D1-type or D2-type dopamine receptor antagonists. In three experiments, male Wistar rats (250-350 g) were given seven to nine injections (at 48-h intervals) of 7-OH-DPAT (1.0 mg/kg, SC) or vehicle in combination with the D2-type dopamine antagonist eticlopride (0.3 mg/kg, SC), the D1-type dopamine antagonist SCH 23390 (0.1 or 0.2 mg/kg, SC), or vehicle. After the injections, the rats were tested for locomotor activity in photocell arenas for 2 h. In the first two experiments, after seven injections, all rats were tested for activity following vehicle injections to test for possible conditioning effects. In each experiment, after the last pre-exposure session, all rats were given a challenge injection of 7-OH-DPAT (1.0 mg/kg, SC) and tested for activity. Major findings were as follows: a) 7-OH-DPAT treatments produced a progressively greater increase in locomotor activity with repeated treatment; b) concurrent treatment with eticlopride or SCH 23390 (0.1 and 0.2 mg/kg) blocked the acute locomotor-activating effects of 7-OH-DPAT across days; c) eticlopride, but not SCH 23390, completely blocked the development of behavioral sensitization to 7-OH-DPAT. Although the low dose of SCH 23390 (0.1 mg/kg) produced a partial attenuation of sensitization, the higher dose (0.2 mg/kg) of SCH 23390 appeared to augment, rather than block, sensitization to 7-OH-DPAT; d) rats previously treated with SCH 23390 (0.2 mg/kg, but not 0.1 mg/kg) without 7-OH-DPAT displayed a hyperactive response to the 7-OH-DPAT challenge injection; and e) after vehicle injections, rats previously given 7-OH-DPAT, SCH 23390, or eticlopride either alone or in combination were more active than vehicle control rats. These findings suggest that the neurochemical mechanisms mediating the development of behavioral sensitization to 7-OH-DPAT may differ from those of other dopamine D2-type agonists such as quinpirole or bromocriptine. Moreover, these results demonstrate that hyperactivity responses following vehicle injections in drug-pretreated animals do not necessarily reflect conditioning mechanisms.  相似文献   

4.
Effects of TA-0910 (1-methyl-(S)-4,5-dihydroorotyl-L-histidyl-L-prolinamide), a new thyrotropin releasing hormone (TRH) analog, on spinal reflex potentials and flexor reflexes were compared with those of TRH in C1-spinal rats. Intravenously administered TA-0910 and TRH produced dose-dependent increases in the amplitudes of mono- and polysynaptic reflex potentials and withdrawal flexor reflexes. TA-0910 was more potent and more long-lasting than TRH. The stimulating actions of TA-0910 and TRH on the monosynaptic reflex potential were not antagonized by pretreatment with atropine, cyproheptadine, haloperidol or prazosin, suggesting no involvement of the cholinergic, serotonergic, dopaminergic or noradrenergic system. Intraduodenally administered TA-0910 also produced a lasting potentiation of the withdrawal flexor reflex, but intraduodenally administered TRH showed no effect. These results suggest that TA-0910 may be a more useful drug than TRH for spinal functional disorders.  相似文献   

5.
1. The effect of two D3/2 dopamine receptor agonists, LY-171555 (quinpirole) and 7-hydroxy-N,N-di-n-propyl-2-aminotetralin (7-OH-DPAT) on spontaneous [3H]-acetylcholine ([3H]-ACh) release were investigated in rat striatal synaptosomes. 2. Quinpirole and 7-OH-DPAT inhibited in a concentration-dependent manner the basal efflux of [3H]-ACh with similar Emax (maximal inhibitory effect) values (29.95 +/- 2.91% and 33.19 +/- 1.21%, respectively). Significant differences were obtained between the pEC50 (-log of molar concentration) of quinpirole (7.87 +/- 0.12) and 7-OH-DPAT (7.21 +/- 0.17; P < 0.01). 3. Different concentrations (0.3-10 nM) of haloperidol (D2/3 dopamine receptor antagonist) shifted to the right the concentration-response curves elicited by quinpirole and 7-OH-DPAT, without modifications in the Emax. 4. Slopes of a Schild plot obtained with haloperidol in the presence of quinpirole and 7-OH-DPAT were not significantly different from unity (0.85 +/- 0.05 and 1.17 +/- 0.11, respectively) and consequently haloperidol interacted with a homogeneous receptor population. The pKB values of haloperidol obtained from Schild regression were 9.96 +/- 0.15 (in presence of quinpirole) and 9.90 +/- 0.09 (in presence of 7-OH-DPAT). 5. Specific binding of [3H]-YM-09151-2 to membranes of striatal synaptosomes and cells expressing D2 and D3 dopamine receptors was inhibited by haloperidol. Analysis of competition curves revealed the existence of a single population of receptors. There were no differences between the estimated pKi (-log of molar concentration) values for synaptosomes (8.96 +/- 0.02) and cells expressing D2 receptors (8.81 +/- 0.05), but the pKi value from cells expressing D3 dopamine receptors differed significantly (8.48 +/- 0.06; P < 0.01). 6. In conclusion, the data obtained in the present study indicate that quinpirole and 7-OH-DPAT, two D3/2 dopamine receptor agonists, inhibit the spontaneous [3H]-ACh efflux and this effect is competitively antagonized by haloperidol and probably mediated through dopamine D2 receptors.  相似文献   

6.
The stimulatory effect of TA-0910 on the secretions of thyroid-stimulating hormone (TSH) and thyroid hormones was investigated in male and female rats. Single intravenous administration of TA-0910 at 8.3 nmol/body acutely elevated the plasma TSH level, with delayed and moderate increases of T3 and T4 in plasma. Similar increments of plasma TSH and thyroid hormones were observed when TRH was injected at the dose of 0.83 nmol/body. Oral administration of TA-0910 at 2.75 mumol/body was equally potent or slightly more potent to secrete TSH than TRH at 0.275 mumol/body. The elevated TSH by TA-0910 decreased to the control level within 2 hr after intravenous injection or within 6 hr after oral administration; on the other hand, the higher levels of the thyroid hormones were retained for up to 4 and 6 hr after intravenous and oral administration, respectively. These findings indicate that TA-0910 and TRH stimulate the secretion of TSH and thyroid hormones by a similar manner and that the TSH-secreting activity of TA-0910 is lower by an order of magnitude compared with that of TRH.  相似文献   

7.
The effects of thyrotropin-releasing hormone (TRH) receptor agonists were examined on 3-acetylpyridine-induced cerebellar ataxia in rats. 3-acetylpyridine markedly decreased the maximal height of vertical jump, accompanied by motor incoordination. Both TA-0910 ((-)-N-[(S)-hexahydro-1-methyl-2,6-dioxo-4-pyrimidinylcarbonyl]-L- histidyl-L-prolinamide tetrahydrate; 0.3-3 mg/kg), a novel TRH analog, and TRH (10 and 30 mg/kg) significantly increased the suppressed maximal height of vertical jump after single intraperitoneal administration. The effects of these drugs reached a maximum at 1 h and disappeared 24 h after administration. Both the TA-0910 (1 mg/kg)- and TRH (10 mg/kg)-induced increases in the maximal height of vertical jump were completely counteracted by pretreatment with i.p. injected MK-801 (10,11-dihydro-5-methyl-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate; 0.1 mg/kg), an NMDA receptor antagonist. Neither bicuculline, muscimol, baclofen, cyproheptadine nor prazosin affected the effect of the TRH receptor agonists. In conclusion, TA-0910 is more potent than TRH in ameliorating cerebellar functional disorders. The anti-ataxic effects of these TRH receptor agonists may be mediated by NMDA receptors in 3-acetylpyridine-treated rats.  相似文献   

8.
The possible role of the endogenous kinins in the control of alcohol intake was assessed in two experiments. In Experiment 1, naive rats, maintained on ad lib food and water, were given daily 40-min access to a 6% (w/v) alcohol solution and water. Daily intraperitoneal (IP) injections of captopril (20 mg/kg) significantly reduced alcohol intake, while pretreatment with subcutaneous (SC) injections of the bradykinin antagonist [D-Phe7]-bradykinin (100-300 micrograms/kg) attenuated the suppressive effect of captopril on alcohol intake. The saline vehicle or the bradykinin antagonist alone did not alter alcohol intake. In Experiment 2, bradykinin was administered daily at 100, 200, and 400 micrograms/kg doses SC either alone or in combination with captopril 10 mg/kg IP. Neither bradykinin nor captopril by themselves changed alcohol or water intake. Bradykinin combined with captopril stimulated water intake and reduced alcohol intake by up to 70%. This effect was not due to drug-induced changes in the pharmacokinetics of alcohol. The angiotensin II receptor antagonist [Sar1,Thr8]-angiotensin II at 250 and 500 micrograms/kg SC attenuated the stimulation of water intake but not the reduction in alcohol intake. It is suggested that by inhibiting kininase II, ACE inhibitors extend the duration of action of bradykinin and thereby unmask a potent inhibition of alcohol intake mediated by kinins--an effect that is dissociable from the accompanying stimulation of water intake. Taken together, these results point to an involvement of the kinin system in the regulation of alcohol intake and in particular to a role of bradykinin in the suppressive effect of ACE inhibitors on alcohol intake.  相似文献   

9.
In rats with unilateral lesions of the nigrostriatal dopamine pathway with 6-hydroxydopamine, the motor stimulating effects of levodopa, an indirect dopamine receptor agonist, evidenced by contraversive rotations, become enhanced upon repeated intermittent administration. However, the mechanisms of this behavioral sensitization are essentially unknown. We show that development of sensitization is accompanied by a progressive appearance of D3 receptor mRNA and binding sites, visualized by in situ hybridization and 7-[3H] hydroxy-N,N-di-n-propyl-2-aminotetralin autoradiography, respectively, occurring in the denervated caudate putamen, a brain area from which this receptor subtype is normally absent. Development and decay of these two processes occur with closely parallel time courses, whereas there were no marked changes in D1 or D2 receptor mRNAs. D3 receptor induction by levodopa is mediated by repeated D1 receptor stimulation, since it is prevented by the antagonist SCH 33390 and mimicked by the agonist SKF 38393, but not by two D2 receptor agonists. The enhanced behavioral response to levodopa is mediated by the newly synthesized D3 receptor, since it is antagonized by nafadotride, a preferential D3 receptor antagonist, in low dosage, which has no such effect before D3 receptor induction. D3 receptor induction and behavioral sensitization are also accompanied by a sustained enhancement of prodynorphin mRNA level and a progressively decreasing expression of the preprotachykinin gene. We propose that imbalance between dynorphin and substance P release from the same striatonigral motor efferent pathway, related to D3 receptor induction, is responsible for behavioral sensitization.  相似文献   

10.
The involvement of dopamine D1 receptor systems in the reinforcing properties of opiate reward was studied by examining the effect of the dopamine D1 antagonist SCH23390 on the initiation of heroin self-administration in rats. The D1 antagonist was administered daily systemically or locally in the nucleus accumbens (NAC), after which the animals were allowed to self-administer heroin (IV) in a 3-h session for 5 consecutive days. Systemic treatment with SCH23390 (0.17 and 0.5 mg.kg-1) significantly decreased heroin intake during initiation of heroin self-administration, while a dose of 0.06 mg.kg-1 was not effective. Local administration of SCH23390 (0.5 and 2.5 micrograms/site) in the NAC did not affect heroin intake. Both systemic and intra-accumbal administration of SCH23390 dose dependently decreased motor behavior measured in a small open field. The attenuation of heroin intake during initiation of heroin self-administration by blockade of dopamine D1 receptor systems may be due to a decrease in the reinforcing effects of heroin or more likely to a reduction in non-reinforcement-related behavior. The dopamine D1 receptors present in the NAC are probably not involved in opiate reward.  相似文献   

11.
Differences in the mesolimbic dopamine (DA) pathway that regulates alcohol preference may also increase sensitivity to the reinforcing effects of other drugs of abuse. In the present study, the curve-shift (rate-frequency) paradigm was used to quantify the interaction of amphetamine with the rewarding effects of lateral hypothalamic brain stimulation reward (BSR) in alcohol-preferring (P) and -nonpreferring (NP) rats. The role of D? and D? DA receptors of the nucleus accumbens (NAcc) in mediating the reward-potentiating effects of amphetamine was also determined. Animals were tested with randomly administered amphetamine (0.25, 0.75, 1.25 mg/kg ip), DA-receptor antagonists (SCH 23390 [2.0 μg, 5.0 μg]; eticlopride [2.0 μg, 5.0 μg]), or a combination of the 2 (SCH 23390 [2.0 μg, 5.0 μg] + 0.75 mg/kg amphetamine; eticlopride [2.0 μg, 5.0 μg] + 0.75 mg/kg amphetamine). Amphetamine produced comparable dose-related leftward shifts in the rate-frequency function for both P and NP rats, with a greater than 60% reduction observed in BSR threshold. On intervening days, baseline threshold was unaltered between tests and similar between rat lines. Unilateral infusion in the NAcc of either the D? or D? receptor antagonist produced rightward shifts in the rate-frequency function of amphetamine, completely reversing-attenuating its reward-enhancing effects. The results demonstrate that amphetamine produces similar threshold-lowering effects in both P and NP rats and that the reward-potentiating effects of amphetamine do not correlate with alcohol preference under the conditions of the present study. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

12.
We tested the hypothesis that aberrant dopaminergic innervation in frontal and cingulate cortices of schizophrenic patients might be revealed by examining dopamine D1 receptor density in these brain regions. A quantitative autoradiographic assay with [3H]-SCH 23390 was performed with samples from schizophrenic patients, normal controls, neuroleptic-treated controls, and suicides. There was a significant elevation in specific binding of [3H]-SCH 23390 in the intermediate layer of the prefrontal cortex from neuroleptic-treated controls (p = .05). Elevated [3H]-SCH 23390 binding in several layers from prefrontal and cingulate cortex was observed in schizophrenic subjects, although these results did not reach statistical significance. When data from subjects who had received neuroleptics (schizophrenics and neuroleptic controls) were compared to subjects who had not received neuroleptics (normal controls and suicides), there was a significant elevation in receptor density in both the prefrontal (p = .05) and cingulate cortices (p = .03). These data suggest that elevated [3H]-SCH 23390 binding in human prefrontal and cingulate cortices may occur with chronic neuroleptic treatment, although increased receptor density that may exist as a feature of psychotic illnesses cannot be excluded.  相似文献   

13.
The stimulating effect of antiparkinsonian drugs, talipexole and bromocriptine, on the striatal postsynaptic dopamine receptors were studied by measuring contralateral rotational behavior in rats. The nigro-striatal dopamine system of rats was degenerated by unilateral injection of 6-hydroxydopamine (6-OHDA, 8 micrograms/rat) into substantia nigra. By subcutaneous administration, talipexole at 0.16 mg/kg and bromocriptine at 10.24 mg/kg induced significantly increased rotational behavior to the contralateral direction to the lesioned side. The onset of the effect was 30 min for talipexole and 90 min for bromocriptine. By intragastric administration, talipexole at 0.4 mg/kg and bromocriptine at 20.48 mg/kg significantly increased the rotational behavior, and the onset of the effect was 60 min for talipexole and 180 min for bromocriptine. Rotational behavior induced by talipexole was suppressed by a D2 antagonist, sulpiride (40 mg/kg, s.c.), but not by a D1 antagonist, SCH23390 (1 mg/kg, s.c.). In contrast, rotational behavior induced by bromocriptine was suppressed by both sulpiride and SCH23390. These results indicated that when the nigrostriatal dopaminergic functions are disrupted, talipexole stimulates the striatal postsynaptic dopamine receptors at much lower doses than bromocriptine. Also it was indicated that the stimulating effect of talipexole is solely mediated by dopamine D2 receptors, whereas the effect of bromocriptine is mediated by both D1 and D2 receptors.  相似文献   

14.
The aporphine alkaloids boldine and glaucine have been reported to show "neuroleptic-like" actions in mice, suggesting that they may act as dopamine antagonists. We have found that in vitro boldine displaces specific striatal [3H]-SCH 23390 binding with IC50 = 0.4 microM and [3H]-raclopride binding with IC50 = 0.5 microM, while the affinities of glaucine at the same sites are an order of magnitude lower. In vivo, however, 40 mg/kg boldine (i.p.) did not modify specific striatal [3H]-raclopride binding and only decreased [3H]-SCH 23390 binding by 25%. On the other hand, 40 mg/kg glaucine (i.p.) displaced both radioligands by about 50%. Behaviors (climbing, sniffing, grooming) elicited in mice by apomorphine (0.75 mg/kg s.c.) were not modified by boldine at doses up to 40 mg/kg (i.p.) but were almost completely abolished by 40 mg/kg glaucine (i.p.). In the apomorphine-induced (0.1 mg/kg s.c.) rat yawning and penile erection model, boldine and glaucine appeared to be similarly effective, inhibiting both behaviors by more than 50% at 40 mg/kg (i.p.). Boldine and glaucine, injected i.p. at doses up to 40 mg/kg, were poor modifiers of dopamine metabolism in mouse and rat striatum. These data suggest that boldine does not display effective central dopaminergic antagonist activities in vivo in spite of its good binding affinity at D1- and D2-like receptors, and that glaucine, although less effective in vitro, does appear to exhibit some antidopaminergic properties in vivo.  相似文献   

15.
Central and peripheral administration of DDAVP increase locomotor activity in rats in doses that alter brain dopamine neurochemistry. In order to delineate the role of catecholamines in this behavioural effect of DDAVP, the effects of different catecholamine manipulating agents on DDAVP-induced locomotor stimulation were studied in rats. The catecholamine depleting agent reserpine (5 mg/kg), administered alone or together with the catecholamine synthesis inhibitor alpha-methyltyrosine (250 mg/kg), completely prevented the locomotor stimulatory effect of DDAVP. The dopamine D1 receptor antagonist Sch-23390 (0.01 and 0.03 mg/kg) significantly antagonized the DDAVP-induced locomotor stimulation when administered in the higher dose, that also produced a significant reduction of locomotor activity per se, whereas the dopamine D2 receptor antagonist raclopride (0.08 and 0.16 mg/kg) had no significant effect. The two dopamine blockers administered together produced a significant, dose-dependent reduction of DDAVP-induced locomotor stimulation, while controls were not significantly affected. Also the alpha-adrenoceptor antagonist phenoxybenzamine decreased the DDAVP-induced locomotor stimulation in a dose (20 mg/kg) that did not influence locomotor activity in controls, and, finally, administration of Sch-23390, raclopride and phenoxybenzamine antagonised the DDAVP-induced effect in a dose combination that failed to influence locomotor activity per se. In vivo microdialysis experiments in awake, freely moving rats indicated that DDAVP increases dopamine overflow in the nucleus accumbens, a brain area of importance for initiation of locomotor activity, by approximately 25%, as compared to baseline levels. Taken together, these results indicate that the central stimulatory action of DDAVP involves granula-mediated dopamine release and subsequent activation of dopamine D1 and D2 receptors, and that alpha-adrenoceptors possibly also are involved.  相似文献   

16.
The role of dopaminergic innervation on the postnatal developmental expression of D1 dopamine receptors was investigated. Bilateral destruction of dopamine-containing neurons was achieved by treating rats intracisternally with 6-hydroxydopamine (6-OHDA) on postnatal day 3, and rats were killed on day 21. To ensure effective reduction of D1 receptor activation by residual dopamine, a group of 6-OHDA-lesioned rats was given twice daily injections of the D1 receptor antagonist SCH-23390, from day 4 to 20. D1 dopamine receptor binding was assessed in the caudate-putamen, nucleus accumbens, and olfactory tubercle by quantitative autoradiographic analysis of [3H]SCH-23390 binding. In addition, the relative amount of D1A receptor mRNA was assessed by in situ hybridization of a 35S-labeled riboprobe. In the developing rats, neither the amount of [3H]SCH-23390 binding nor the amount of D1A receptor mRNA was altered by 6-OHDA lesioning followed by chronic treatment with SCH-23390. Thus, bilateral destruction of dopamine-containing neurons and treatment with SCH-23390 in neonatal rats did not interfere with the developmental expression of D1 receptors or alter the levels of mRNA that code for this receptor protein. Treatment of intact rats with SCH-23390 from postnatal day 4 to 20 also did not alter [3H]SCH-23390 binding or levels of D1 receptor mRNA. However, adult rats treated chronically with SCH-23390 exhibited increased [3H]SCH-23390 binding but did not show a significant change in D1 receptor mRNA levels.  相似文献   

17.
Intact cultured retina cells from chick embryos at stage E9C5 (cultures initiated with retinae from 9-day old embryos followed by 5 days in culture), preincubated with 2 nM unlabelled SCH 23390 (R(+)-7- chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrochloride) for 20 to 60 min at 37 degrees C and then washed 5 to 25 times (approximately 1.5 min/wash) with 2 ml SCH 23390-free medium, responded to dopamine with cAMP accumulation that corresponded to 30-50% of the dopamine-promoted cAMP accumulation observed in untreated cells or in cells exposed to the inactive isomer of SCH 23390. Therefore, 50 to 70% of the dopamine response of SCH 23390-pretreated cells was inhibited after extensive washings of the cultures. At E9C12 the fraction of the dopamine response that remained inhibited by SCH 23390 after the washings declined to 30% of the control cultures or the cultures exposed to the SCH 23390 enantiomer. Cultures at stage E9C5 treated with SCH 23390 followed by extensive washings as above and then used for measuring the number of [3H]-SCH 23390 specific binding sites revealed that 60% of the sites did not interact with the tritiated compound when compared to untreated cultures or to cultures preincubated with the inactive isomer of SCH 23390. When E9C12 cultures were subjected to the same experimental protocol less than 10% of D1-like sites did not interact with [3H]-SCH 23390 after the cells had been exposed to the unlabelled compound. Dissociated cells prepared from intact retinae obtained from 12-13-day old embryos also displayed a subpopulation of D1-like sites that interacted irreversibly with SCH 23390 in a stereospecific way. These sites corresponded to 25% of the total number of D1-like sites present in the retina at this developmental stage. In retina cells obtained from one-day old posthatched chicks these sites were no longer detected. These data show that cultured retina cells as well as cells obtained from retina developing in ovo display two populations of D1-like receptors. One interacts irreversibly with SCH 23390 and is present only in the undifferentiated tissue or in cells at the early stages of culture and the other has a lower affinity for SCH 23390 with which its interaction follows reversible kinetics. These sites are present throughout the differentiation stages studied.  相似文献   

18.
Nucleus accumbens dopamine is often hypothesized as the critical factor for modulating cocaine self-administration. In the current study we examined the extent to which dopamine in the amygdala could contribute to cocaine intake behaviour and modify nucleus accumbens dopamine levels. Rats were trained to self-administer intravenous cocaine (1.5 mg/kg/injection) under a fixed-ratio reinforcement schedule in daily 3 h operant training sessions. In the first in vivo microdialysis experiment, extracellular dopamine levels were found to be increased 200% of baseline in the amygdala and by 400% in the nucleus accumbens. Although cocaine induced similar profiles of dopamine overflow in the two mesolimbic areas, in the nucleus accumbens the latency of the dopaminergic response was shorter (three- to four-fold) during both initiation and termination of the cocaine self-administration session than in the amygdala. Despite achieving a stable self-regulated pattern of cocaine intake and high dopamine concentrations in the nucleus accumbens, a unilateral injection of the D1 receptor antagonist SCH 23390 (0.5 or 1.5 microg) into the amygdala was still able to increase the rate of cocaine intake. This behavioural effect was accompanied by a dose-dependent increase in nucleus accumbens dopamine levels; at the highest SCH 23390 concentration cocaine intake was increased by 400% and dopamine levels were potentiated by an additional 400%. In vivo autoradiography using [3H]SCH 23390 showed that D1 receptor sites contributing to the behavioural and subsequent neurochemical effects were predominantly localized to the amygdala and not the nucleus accumbens. Altogether these results point to a significant contribution of in vivo amygdala D1 dopamine transmission to cocaine self-administration behaviour.  相似文献   

19.
The ergoline derivative, LEK-8829 (9,10-didehydro-N-methyl-(2-propynyl)-6-methyl-8-aminomethylerg oline), has been proposed as a potential atypical antipsychotic drug with antagonistic actions at dopamine D2 and serotonin 5-HT2 and 5-HT1A receptors (Krisch et al., 1994, 1996). LEK-8829 also induces contralateral turning in rats with 6-hydroxydopamine-induced unilateral lesion of dopamine nigrostriatal neurons. Turning is blocked by SCH-23390 (R(+)-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzaze pine), a dopamine D1 receptor antagonist. It has been suggested that LEK-8829 could have beneficial effects in parkinsonian patients suffering from psychotic episodes induced as a side-effect of antiparkinsonian treatment with dopamine D2 receptor agonists. Therefore, we now investigated the interaction of LEK-8829 with the dopamine D2 receptor agonist bromocriptine (2-bromo-alpha-ergokryptine) in 6-hydroxydopamine-lesioned rats. Treatment with either LEK-8829 (3 mg kg(-1)) or bromocriptine (3 mg kg(-1)) induced a vigorous contralateral turning response. The cumulated number of turns induced by the treatment with both drugs combined was not significantly different from the cumulated number of turns induced by single-drug treatment. The pretreatment with SCH-23390 (1 mg kg(-1)) did not have a significant effect on the bromocriptine-induced turning but significantly decreased the turning observed after the combined LEK-8829/bromocriptine treatment. We conclude that in the 6-hydroxydopamine model, the turning behaviour mediated by the LEK-8829/bromocriptine combination may be the result of opposing activity of both drugs at dopamine D2 receptors with concomitant stimulation of dopamine D1 receptors by LEK-8829. Therefore, LEK-8829 may have a potential for the therapy of parkinsonism complicated by dopamine D2 receptor agonist drug-induced psychosis.  相似文献   

20.
This experiment tested the hypotheses that: (1) self-administration of cocaine would produce an increase in dopamine (DA) oxidation current in the nucleus accumbens (n. acc.); and (2) a faster rate of cocaine intake in the presence of a D1 receptor antagonist would produce a greater increase in DA levels. Rats trained to self-administer cocaine under a fixed-ratio 2 schedule were implanted with stearate-modified graphite paste electrodes bilaterally in the n. acc. The effect of pretreatment with the D1 receptor antagonist, SCH23390, on the DA oxidation current associated with self-administration of cocaine (1 mg/inj.) or saline was investigated using chronoamperometry. Pretreatment with SCH23390 produced a 2-fold increase in the amount of cocaine intake. This in turn resulted in a 2-fold increase in the DA oxidation current recorded in the n. acc. Pretreatment with SCH23390 did not, however, produce any significant change in either the number of saline injections received or the DA oxidation current recorded during saline self-administration. These findings show that cocaine increases DA oxidation currents in the n. acc., and that both the rate of cocaine self-administration and the magnitude of these currents increase even further following SCH23390. The results also imply that the baseline rate of cocaine self-administration does not result in the occupation of all possible DA transporter sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号