首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
制备了羧甲基纤维素-单宁基吸附树脂,并研究了吸附树脂对亚甲基蓝的吸附性能。羧甲基纤维素与单宁结合,通过羧甲基纤维素羧基与单宁酚羟基的协同作用,能有效提高吸附树脂对亚甲基蓝的吸附性能,最大吸附容量可达1 300 mg/g。在亚甲基蓝溶液初始质量浓度为1 000 mg/L,吸附剂投加质量浓度为1.5 g/L时,吸附树脂对亚甲基蓝的吸附率可达98%以上,且羧甲基纤维素-单宁基吸附树脂具有较好的重复使用性能。  相似文献   

2.
采用共沉淀法制备了硝酸根型层状复合金属氢氧化物NiCoFe-LDHs,研究其对水中的三价砷的吸附性能,系统研究溶液初始浓度、吸附时间以及溶液pH值等因素对吸附性能的影响。结果表明,当As(Ⅲ)溶液浓度为2 mg/L时,吸附率达到了81.1%,吸附量在As(Ⅲ)溶液浓度为4 mg/L时,达到了15.72 mg/g,而溶液pH值为8时,吸附性能最好,且吸附过程在30 min内可以达到平衡。热力学和等温吸附式的研究表明NiCoFe-LDHs对As(Ⅲ)的吸附过程,符合Langmuir模型和伪二级动力学模型,因此吸附过程发生在吸附剂表面,且吸附过程为化学吸附。  相似文献   

3.
麦饭石负载壳聚糖对As(V)的吸附性能研究   总被引:1,自引:0,他引:1  
利用麦饭石负载壳聚糖制备一种复合吸附剂。研究了复合壳聚糖对As(V)的吸附。结果表明:在pH值为4~7,吸附时间为40min,复合壳聚糖对As(V)的去除率达99%以上,残余As(V)浓度低于国家综合排放标准(0.5mg/L)。通过对实验数据运用相关数学模型拟合,表明复合壳聚糖对As(V)的吸附符合Langmuir和Freundlich吸附等温式,最大吸附量qmax为39.1850mg/g,n为4.7902,相关系数分别为:0.9967、0.9489。吸附过程动力学适合二级动力学方程。  相似文献   

4.
利用麦饭石负载壳聚糖制备一种复合吸附剂.研究了复合壳聚糖对As(Ⅴ)的吸附.结果表明:在PH值为4~7,吸附时间为40 min,复合壳聚糖对As(Ⅴ)的去除率达99%以上,残余As(Ⅴ)浓度低于国家综合排放标准(0.5 mg/L).通过对实验数据运用相关数学模型拟合,表明复合壳聚糖对As(Ⅴ)的吸附符合Iangmuir和Freundlich吸附等温式,最大吸附量q<,max>为39.1850 mg/g,n为4.7902,相关系数分别为:0.9967、0.9489.吸附过程动力学适合二级动力学方程.  相似文献   

5.
利用实验室条件下制备的纳米零价铁(NZVI)、纳米FeOOH和纳米Fe_3O_4,研究不同环境因素条件下各纳米铁系物对As(Ⅲ)的吸附性能。通过扫描电镜和X射线衍射扫描三种铁系物的微观结构,并分析模拟吸附动力学和吸附等温线。批试验的结果显示:当pH值为6,As(Ⅲ)的初始浓度为0.5 mg/L,2 h内NZVI对溶液中As(Ⅲ)的去除率高达99%,最大吸附量为5.99 mg/g;纳米FeOOH的最佳吸附条件为pH值为5,As(Ⅲ)初始浓度1 mg/L,4 h内的去除率可达92%;纳米Fe_3O_4的最佳吸附条件为pH值为7,As(Ⅲ)初始浓度为1 mg/L,24 h的最终去除率为60%。共存离子影响试验表明,对三种纳米铁系物吸附作用影响最大的均是溶液中的磷酸根。对吸附机理进行研究,结果表明:三种纳米铁系物吸附As(Ⅲ)的过程符合伪二级动力学模型,NZVI和纳米FeOOH的吸附等温数据符合Freundlich模型,纳米Fe_3O_4的吸附等温模型更加符合Langmuir等温模型。  相似文献   

6.
橘皮经氢氧化钠、双氧水处理制得纤维素,用丙烯酰胺对其进行化学改性制得吸附剂,考查了其对水中Cd2+的吸附性能。结果表明:橘皮纤维素制备的最佳条件为橘皮粉末1.6 g,20 m L体积分数30%的双氧水,氢氧化钠固体1.6 g,反应温度80℃,反应时间2 h;所制得的吸附剂吸附Cd2+的最佳条件为pH值6.0,50 m L Cd2+浓度为100 mg/L时吸附剂用量为0.10 g,25℃下吸附18 h,最大平衡吸附容量为18.832 mg/g。该研究有望为橘皮废料的高附加值利用提供理论研究价值及应用技术支持。  相似文献   

7.
新型纤维素螯合吸附剂对Cr(Ⅵ)的吸附研究   总被引:1,自引:0,他引:1  
研究了半皂化偕胺肟基纤维素吸附剂AOSC对Cr(Ⅵ)的吸附,探讨了各种因素对吸附效果的影响。结果表明,当Cr(Ⅵ)的初始质量浓度为100mg/L时,最佳的吸附条件为:吸附液pH值为2,吸附时间2h,吸附温度35℃。在此条件下AOSC的吸附容量和Cr(Ⅵ)去除率分别达到49.8mg/g和99.5%。吸附性能对比实验表明,AOSC对Cr(Ⅵ)的吸附效果优于纤维素基离子交换剂和偕胺肟基螯合吸附剂。  相似文献   

8.
离子交换纤维除As(Ⅴ)性能研究   总被引:2,自引:2,他引:0  
研究比较了几种吸附材料的除As(Ⅴ)性能,结果发现,颗粒活性炭的除As(Ⅴ)效果较差,活性氧化铝对As(V)有一定的去除效果,离子交换纤维(IEF)除As(Ⅴ)的效果最好.作者着重研究了IEF除As(Ⅴ)的吸附等温线和反应动力学,考察了pH、共存阴离子对IEF除As(Ⅴ)的影响.研究发现,Freundlich吸附等温线模型要好于Langmuir模型.吸附速率符合拟一级反应动力学.IEF的除As(Ⅴ)潜力较大,在As(Ⅴ)初始质量浓度为25 mg/L时,其吸附As(Ⅴ)的能力达285mg/g.pH偏酸性有利于吸附的进行.但共存离子的存在影响砷的吸附,通过负载铁到IEF上,可有效地解决这一问题,且总的吸附As(Ⅴ)的能力有一定的提高.  相似文献   

9.
以交联羧甲基纤维素(CCMC)、丙烯酰胺(AM)为原料,过硫酸钾为引发剂,N,N'–亚甲基双丙烯酰胺为交联剂,通过微波辐射法制备了吸水性树脂丙烯酰胺接枝交联羧甲基纤维素(AM–g–CCMC)。研究了溶液p H值、盐溶液浓度对AM–g–CCMC树脂吸水倍率的影响;同时考察了染料p H值、吸附时间、染料浓度、吸附剂浓度对树脂吸附量[对碱性品红(BF)和亚甲基蓝(MB)]的影响。结果表明,AM–g–CCMC对去离子水和浓度为0.154 mol/L的Na Cl,Ca Cl2,Fe Cl3溶液的最大吸水倍率分别为1 735,165,82,43 g/g;在20℃,浓度0.25 g/L条件下,AM–g–CCMC对BF和MB的最大吸附量分别为370 mg/g和323.4 mg/g。同时对该树脂的循环利用性能进行了初步研究。结果表明,吸附MB的AM–g–CCMC的再生效果略好于吸附BF的树脂。  相似文献   

10.
以硫酸钛为前驱体,水解法制备纳米TiO2,用XRD、SEM、BET手段进行表征。考察了制备方法、硫酸钛浓度、水解温度、干燥温度、分散剂PVA浓度及搅拌作用对纳米二氧化钛吸附As(Ⅴ)的影响,得到水解法制备纳米TiO2的最佳条件,并进一步考察了As(Ⅴ)溶液pH、吸附动力学和初始浓度对纳米TiO2吸附性能的影响。结果表明,水解温度为80℃、煅烧温度100℃、硫酸钛浓度为0.2 mol/L,pH 6.0,初始As(Ⅴ)100 mg/L时纳米TiO2颗粒物对As(Ⅴ)的吸附量可达到89.28 mg/g。XRD衍射表明,所制备的TiO2为锐钛矿型,SEM表明其平均粒径小于20 nm,BET表明比表面积为167 m2/g。  相似文献   

11.
氢氧化铁胶体对砷吸附行为的初步研究   总被引:5,自引:0,他引:5  
研究了pH值、铁与砷的量比和初始砷浓度等因素对用氢氧化铁胶体吸附去除砷的影响,确定了最佳吸附条件。研究结果表明,在初始As(Ⅴ)或As(Ⅲ)浓度为0.1mmol/L条件下,去除As(Ⅴ)的最佳pH值为4~8,去除As(Ⅲ)最佳pH值为6~9;在初始As(Ⅴ)浓度为0.5mmol/L条件下,去除As(Ⅴ)的最佳pH值为5~7,吸附后溶液中砷含量低于0.5mg/L,达到了《污水综合排放标准(GB8978-1996)》中工业废水最高容许排放总砷浓度一级标准。通过等温吸附试验的研究,得出了As(Ⅴ)和As(Ⅲ)的饱和吸附容量分别为0.4971mol/kg和0.3068mol/kg。  相似文献   

12.
通过木屑纤维素的改性制备阳离子木屑纤维素吸附剂,研究其最佳制备条件及对1-萘酚的吸附条件,并对产物进行SEM表征。结果表明,最佳合成条件:CTA/MC质量比2:1,反应时间1.5 h,Na OH溶液浓度20.0%;最适宜的吸附条件为:在吸附剂用量2.5 g,p H 5.0,吸附时间2.0 h,处理25 m L 1-萘酚溶液(20 mg/L),吸附率可达89.56%。  相似文献   

13.
《应用化工》2022,(10):1891-1895
酸催化下,取代度0.82的羧甲基纤维素钠(CMC)经固相加热反应,制备吸附材料交联羧甲基纤维素(CCMC)。研究反应条件对CCMC交联度、交联度对CCMC吸附碱性品红(BF)和亚甲基蓝(MB)性能的影响。结果表明,酸浓度对CCMC交联度影响最大,交联度0.39的CCMC的吸附性能最佳。以交联度0.39的CCMC为吸附剂,研究吸附条件包括固液比、染料初始浓度、pH、吸附时间对CCMC吸附性能的影响。20℃,固液比0.25 g/L条件下,CCMC对BF和MB的饱和吸附量分别为570 mg/g和540 mg/g。  相似文献   

14.
针对废水中氟喹诺酮类抗生素盐酸环丙沙星(HCIP)的污染,以离子液体和二甲基亚砜(DMSO)共混溶液为溶剂,通过相反转技术制备了氧化石墨烯-纤维素复合膜(GOCE)和磁性氧化石墨烯-纤维素复合膜(FGCE)以除去HCIP。同时研究了氧化石墨烯质量分数、纳米Fe_3O_4质量分数、HCIP浓度、溶液温度、溶液pH、共存阴阳离子、水质以及再生次数等因素对复合膜吸附HCIP性能的影响。结果表明,氧化石墨烯和磁性纳米Fe_3O_4质量分数(相对于微晶纤维素质量)分别为5.0%和4.0%的复合膜FGCE对50 mg/L的HCIP溶液的平衡吸附量可达21.67 mg/g。当HCIP溶液质量浓度为10 mg/L时,其吸附率为91.97%。  相似文献   

15.
《应用化工》2016,(10):1891-1895
酸催化下,取代度0.82的羧甲基纤维素钠(CMC)经固相加热反应,制备吸附材料交联羧甲基纤维素(CCMC)。研究反应条件对CCMC交联度、交联度对CCMC吸附碱性品红(BF)和亚甲基蓝(MB)性能的影响。结果表明,酸浓度对CCMC交联度影响最大,交联度0.39的CCMC的吸附性能最佳。以交联度0.39的CCMC为吸附剂,研究吸附条件包括固液比、染料初始浓度、pH、吸附时间对CCMC吸附性能的影响。20℃,固液比0.25 g/L条件下,CCMC对BF和MB的饱和吸附量分别为570 mg/g和540 mg/g。  相似文献   

16.
以3-氯-2-羟丙基三甲基氯化铵(CTA)为醚化剂,对木屑纤维素(MC)进行了改性,并对产物进行了表征. 探讨了阳离子木屑纤维素用量、pH值、吸附温度、吸附时间等因素对水溶液中2,4-二氯苯酚(2,4-DCP)静态吸附效果的影响. 结果表明,阳离子木屑纤维素的制备条件为:CTA/MC质量比2.0,反应时间2.0 h,反应温度30℃,NaOH溶液浓度30%(w). 阳离子木屑纤维素对水溶液中2,4-DCP的最佳吸附条件为:pH 8.0,吸附时间90 min,吸附温度25℃. 此条件下,处理100 mL 2,4-DCP溶液(50 mg/L)的吸附率可达88.92%,吸附容量为1.482 mg/g. 木屑纤维素经改性后,对水中2,4-二氯苯酚存在化学吸附.  相似文献   

17.
灭活烟曲霉菌球对砷的吸附   总被引:1,自引:0,他引:1  
为研究灭活烟曲霉对砷的吸附效果,将烟曲霉菌球经过灭菌(吸附剂Ⅰ)或灭菌后再用FeCl3处理90min(吸附剂Ⅱ),研究了这2种吸附剂在间歇处理过程中对废水中砷的吸附效果。结果表明,2种吸附剂对As3+和As5+均有良好的吸附效果。当废水中砷的质量浓度为0.3576mg/L时,吸附剂I和吸附剂II达到吸附平衡的时间分别为100min和140min。在采用质量浓度为35g/L的生物吸附剂量,达到吸附平衡时,吸附剂I和II对As3+均可完全去除,而对As5+的去除率则分别可达90%和98%。表明灭活烟曲霉菌球可作为砷的有效吸附剂。  相似文献   

18.
以羧甲基纤维素为原料,采用共沉淀法制备了CMC-Fe_2O_3磁性吸附材料。采用间歇吸附实验研究了吸附材料对水中Cr(Ⅵ)的吸附性能,并研究了金属离子初始浓度、吸附时间、溶液pH、吸附剂投加量等对吸附效果的影响。实验结果表明:吸附材料在Cr(Ⅵ)初始浓度为25 mg/L,吸附时间100 min,pH=4,投加量为3 g/L,吸附温度为313 K时,去除率达到89. 94%;吸附动力学遵循准二级动力学模型。  相似文献   

19.
以天然高分子纤维素作为载体填充纳米氧化镁,采用滴落固化技术制得纳米氧化镁纤维素基复合吸附剂,用扫描电镜和X-射线衍射对其进行表征,研究了吸附时间、吸附剂用量、溶液的pH值等因素对阿莫西林吸附效果的影响并进行解吸研究。实验结果表明,对初始浓度为60 mg/L的阿莫西林溶液,在pH=3的条件下,采用6g的吸附剂的吸附效果最佳,Langmuir最大吸附容量可达到6.26 mg/g,吸附过程符合伪二级动力学方程和Langmuir型等温吸附方程。重复使用8次仍具有较好的再吸附能力,具有较好的工业应用前景。  相似文献   

20.
采用改进的Hummers制备氧化石墨烯,对其进行功能化改性,制得功能化氧化石墨烯f-GO,再将功能化氧化石墨烯和纤维素共混,制备了具有较强吸附性能的功能化氧化石墨烯/纤维素复合材料(f-GO/CE)。以复合材料为载体,用静态法考察了pH值、吸附时间、初始浓度等因素对f-GO/CE吸附Pb~(2+)效果的影响。结果表明,吸附最适pH为6,吸附时间是150 min,最佳初始浓度为240 mg/L;同时f-GO/CE对Pb~(2+)的吸附行为符合Langmiur方程,吸附最大量可达到105mg/g,其对铅离子具有优异的吸附性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号