首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Due to high ground stress and mining disturbance, the deformation and failure of deep soft rock roadway is serious, and invalidation of the anchor net-anchor cable supporting structure occurs. The failure characteristics of roadways revealed with the help of the ground pressure monitoring. Theoretical analysis was adopted to analyze the influence of mining disturbance on stress distribution in surrounding rock,and the change of stress was also calculated. Considering the change of stress in surrounding rock of bottom extraction roadway, the displacement, plastic zone and distribution law of principal stress difference under different support schemes were studied by means of FLAC3D. The supporting scheme of U-shaped steel was proposed for bottom extraction roadway that underwent mining disturbance. We carried out a similarity model test to verify the effect of support in dynamic pressure. Monitoring results demonstrated the change rules of deformation and stress of surrounding rock in different supporting schemes. The supporting scheme of U-shaped steel had an effective control on deformation of surrounding rock. The scheme was successfully applied in underground engineering practice, and achieved good technical and economic benefits.  相似文献   

2.
In order to control asymmetric floor heave in deep rock roadways and deformation around the surrounding rock mass after excavation, in this paper we discuss the failure mechanism and coupling control countermeasures using the finite difference method (FLAC3D) combined with comparative analysis and typical engineering application at Xingcun coal mine. It is indicated by the analysis that the simple symmetric support systems used in the past led to destruction of the deep rock roadway from the key zone and resulted in the deformation of asymmetric floor heave in the roadway. Suitable reinforced support countermeasures are proposed to reduce the deformation of the floor heave and the potential risk during mining. The application shows that the present support technology can be used to better environmental conditions. The countermeasures of asymmetric coupling support can not only effectively reduce the discrepancy deformation at the key area of the surrounding rock mass, but also effectively control floor heave, which helps realize the integration of support and maintain the stability of the deep rock roadways at Xingcun coal mine.  相似文献   

3.
深井巷道围岩应力及变形规律的数值分析   总被引:4,自引:0,他引:4  
采用非线性有限元法,对深井巷道围岩应力及变形状态进行了数值计算.分析了巷道埋深、围岩性质和断面形状对围岩变形的影响.结果表明:当巷道埋探小于某一临界深度时,巷道周边围岩移近量随巷道埋深增加呈线性增加;当超过临界深度时,巷道围岩移近量呈现指数规律增加趋势.围岩变形破坏的临界深度取决于围岩的力学性质及巷道断面形状等因素.  相似文献   

4.
深部巷道围岩变形试验与数值模拟研究   总被引:1,自引:0,他引:1  
为了研究深部软岩巷道的变形破坏特性,以淮南矿区某煤矿13-1煤回采巷道为例,在现场调查回采巷道工程概况的基础上,开展了室内深部回采巷道围岩变形特性相似模拟试验,并基于块体离散元法,建立了深部回采巷道围岩的数值模型,模拟了开挖过程中围岩的变形特性。相似模拟试验和数值模拟试验结果表明,深部巷道围岩的典型特征为:巷道底臌量两帮移近量顶板下沉量,巷道不同围岩受开挖扰动的位移影响范围不同,底板为3.5 m,顶板为2.45 m,两帮为5.5 m。  相似文献   

5.
护巷煤柱宽度与巷道围岩变形的关系   总被引:1,自引:0,他引:1  
本文在分析研究大量受采动影响巷道的矿压显现规律和围岩变形的基础上,提出了巷道在采动期间的围岩变形量,以及采动稳定期间的围岩变形速度同护巷煤柱宽度之间的关系,并得出巷道服务期间的围岩变形总量与护巷煤柱宽度之间的关系式,为选择护巷煤柱宽度提供主要依据。  相似文献   

6.
Based on engineering practices of Wuyang Coal Mine, we carried out X-ray diffract researches on No. 3 coal; and the rocks of its roof and floor by XRD meter, and simulated the interactive effect of the surrounding rock deformation by FLAC2D5.0 numerical simulation software under the condition of different tunneling method of multimine roadway in parallel. The internal structures of the surrounding rocks of 76 belt roadway were monitored by borehole observation instruments; and then, we analyzed the reason of failure and deformation of surrounding rocks of several rise entry, and proposed the technical measures for controlling interactive effect of several rise entry surrounding rock deformation at last. For the thickness seam rise roadway, two conclusions were drawn: one is that the co-deformation among roadway groups mainly reflect on that both shear failure and deformation in coal pillar among roadways have decreased the width of pillar core region and clamping action of coal pillar to roof strata, increased the actual span of roof strata, intensified the flexural failure of roof strata and prized the bed separation of roof deep rock strata. The other conclusion is that the factors controlling the interactive deformation among roadways is obvious when appropriate re-adjustment in construction sequence of the tunneling of multimine parallel roadways because the construction sequence among roadways also has great effects on deformation of the surrounding rock in roadway.  相似文献   

7.
The bolt support quality of coal roadways is one of the important factors for the efficiency and security of coal production. By means of a self-developed technique and equipment of random non-destructive testing, non-destructive detection and pre-warning analysis on the quality of bolt support in deep roadways of mining districts were performed in a number of mining areas. The measured data were obtained in the detection instances of abnormal in-situ stress and support invalidation etc. The corresponding relation between axial bolt load variation and roadway surrounding rock deformation and stability was summarized in different mining service stages. Pre-warning technology of roadway surrounding rock stability is proposed based on the detection of axial bolt load. Meanwhile, pre-warning indicators of axial bolt load in different mining service stages are offered and some successful pre-warning cases are also illustrated.The research results show that the change rules of axial bolt load in different mining service stages are quite similar in different mining areas. The change of axial bolt load is in accord with the adjustment of surrounding rock stress, which can consequently reflect the deformation and stability state of roadway surrounding rock. Through the detection of axial bolt load in different sections of roadways, the status of real-time bolt support quality can be reflected; meanwhile, the rationality of bolt support design can be evaluated which provides reference for bolting parameters optimization.  相似文献   

8.
In order to understand the change rules of stress-displacement in surrounding rocks of dynamic pressure roadways in deep mines and to obtain a theoretical basis for analyses of roadway stability and designs of support,we established a coupling equation of adjacent rock strength,mining stress and supporting resistance on the basis of an elastic-plastic theory of mechanics.We obtained an analytical solution for stress and displacement distribution of elastic and plastic regions in surrounding rock of dynamic pressure roadway..Based on this theory,we have analyzed the changes in stress-displacement in elastic and plastic regions of surrounding rocks of dynamic pressure roadways in the Haizi Coal Mine.The results show that:1) radial and tangential stress change violently within the first 4 m from the inner surface of a roadway after excavation;radial stress increases while tangential stress decreases within a range of about 6 m from the inner surface of the roadway as a function of q3;2) radial and tangential stress increase with an increase in the mining pressure coefficient k;the increase in the rate of tangential stress is greater than that of radial stress;3) the radial displacement of the inner surface of roadways decreases with an increase in q3,provided that k remains unchanged.  相似文献   

9.
针对回采时反复采动作用下的保护层开采扰动煤岩极易诱发巷道围岩失稳的问题,采用分级循环荷载模拟实际回采工程中采动应力的长期作用,研究保护层开采扰动煤岩在循环荷载作用下的力学强度及变形破坏特性.试验结果表明,在加卸载过程中,受保护层开采扰动煤样的体积膨胀变形明显,煤样内部结构破坏程度比未受保护层开采扰动煤样更高.在加卸载后期,受保护层开采扰动煤样表现为塑性破坏,未受保护层开采扰动煤样发生明显的脆性破坏.相比于未受保护层开采扰动煤样,受保护层开采扰动煤样的峰值强度下降,单位体积(直径为50 mm,高度为100 mm)内的煤样裂隙体积显著增加,峰值强度和裂隙体积占比均沿煤层走向分布较为均匀.处于断层带的未受保护层开采扰动煤样的彼此物性差异较大.受保护层开采扰动煤样比未受保护层开采扰动煤样更符合“煤岩破坏时,裂隙空间复杂程度与峰值强度存在反向对应分布”规律.  相似文献   

10.
综放全煤平巷锚杆支护模拟试验研究   总被引:2,自引:0,他引:2  
根据“巷道围岩松动圈支护理论”,以南屯矿3上 煤层综放工作面全煤平巷围岩条件为基础,对不同动压系数、侧压系数、锚杆支护参数条件下,锚杆支护巷道围岩应力分布、围岩变形及巷道破坏规律进行了模拟试验.试验证实,矩形煤巷顶板中存在一个卸压区,巷道两帮和角部区域围岩破坏严重,是支护的重点部位.锚网支护能有效控制采动压力影响下全煤巷道围岩的稳定性.试验得到的结论对于综放全煤巷道锚网支护设计和应用具有指导意义.  相似文献   

11.
Roadway instability has been a major concern in the fields of mining engineering. This paper aims to provide practical and efficient strategy to support the roadways under high in-situ stress. A case study on the stability of deep roadways was carried out in an underground mine in Gansu province, China. Currently,the surrounding rock strata is extremely fractured, which results in a series of engineering disasters, such as side wall collapse and severe floor heave in the past decades. Aiming to solve these problems, an improved support method was proposed, which includes optimal bolt parameters and arrangement, floor beam layout by grooving, and full length grouting. Based on the modeling results by FLAC3D, the new support method is much better than the current one in terms of preventing the large deformation of surrounding rock and restricting the development of plastic zones. For implementation and verification, field experiments, along with deformation monitoring, were conducted in the 958 level roadway of Mining II areas. The results show that the improved support can significantly reduce surrounding rock deformation, avoid frequent repair, and maintain the long-term stability of the roadway. Compared to the original support, the new support method can greatly save investment of mines, and has good application value and popularization value.  相似文献   

12.
To explore the failure mechanism of roadway in layered soft rocks, a physical model with the physically finite elemental slab assemblage(PFESA) method was established. Infrared thermography and a video camera were employed to capture thermal responses and deformation. The model results showed that layered soft roadway suffered from large deformation. A three-dimensional distinct element code(3 DEC) model with tetrahedral blocks was built to capture the characteristics of roadway deformation,stress, and cracks. The results showed two failure patterns, layer bending fracture and layer slipping after excavation. The layer bending fracture occurred at positions where the normal direction of layers pointed to the inside of the roadway and the layer slipping occurred in the ribs. Six schemes were proposed to investigate the effects of layered soft rocks. The results showed that the deformation of ribs was obviously larger than that of the roof and floor when the roadway passed through three types of strata.When the roadway was completely in a coal seam, the change of deformation in ribs was not obvious,while the deformation in the roof and floor increased obviously. These results can provide guidance for excavation and support design of roadways in layered soft rocks.  相似文献   

13.
In order to effectively control the deformation and failure of surrounding rocks in a coal roadway in a deep tectonic region, the deformation and failure mechanism and stability control mechanism were studied. With such methods as numerical simulation and field testing, the distribution law of the displacement, stress and plastic zone in the surrounding rocks was analyzed. The deformation and failure mechanisms of coal roadways in deep tectonic areas were revealed: under high tectonic stress, two sides will slide along the roof or floor; while the plastic zone of the two sides will extend along the roof or floor, leading to more serious deformation and failure in the corner of two sides and the bolt supporting the corners is readily cut off by the shear force or tension force. Aimed at controlling the large slippage deformation of the two sides, serious deformation and failure in the corners of the two sides and massive bolt breakage, a “controlling and yielding coupling support” control technology is proposed. Firstly, bolts which do not pass through the bedding plane should be used in the corners of the roadway, allowing the two sides to have some degree of sliding to achieve the purpose of “yielding” support, and which avoid breakage of the bolts in the corner. After yielding support, bolts in the corner of the roadway and which pass through the bedding plane should be used to control the deformation and failure of the coal in the corner. “Controlling and yielding coupling support” technology has been successfully applied in engineering practice, and the stability of deep coal roadway has been greatly improved.  相似文献   

14.
Surrounding rock control in the overlying protective coal seam is a challenging topic for de-stressed mining of multi-seamed coal. Current research findings on roadway control were used in the design of a physical model of a complex textured roof having a varying thickness. The model was used to study roadway instability and collapse caused by dynamic pressure. The results show that when the thickness of the roof exceeds the bolted depth the roadway security is least and the roof has the greatest possibility for collapse. Numerical simulations were also carried out to study stress redistribution before and after roadway excavation during underlying protective seam mining. The evolution of roadway displacement and fracture, as affected by support methods, has been well studied. A series of support principles and technologies for mining affected roadways has been proposed after demonstration of successful practical application in the Huainan Mines. These principles and technologies are of extended value to deep coal mining support in China.  相似文献   

15.
The FLAC3D software was used to simulate and analyze numerically the displacement, stress and plastic zone distribution characteristics of a large span intersection in a deep soft rock roadway after the surrounding rock was excavated. Our simulation results show that there are two kinds of dominating factors affecting roadway stability at points of intersection, one is the angle between horizontal stress and axial direction of the roadway and the other are the angles at the points of intersection. These results are based on a study we carried out as follows: first, we analyzed the failure mechanism of a large span intersection and then we built a mechanical model of a rock pillar at one of the points of intersection. At the end of this analysis, we obtained the failure characteristics of the critical parts on the large span intersection. Given these failure characteristics, we proposed a new supporting method, i.e., a Double-Bolt Control Technology (DBCT). By way of numerical simulation, DBCT can effectively control the deformation of the surrounding rock at the points of intersection in roadways.  相似文献   

16.
综放回采巷道围岩力学特征实测研究   总被引:17,自引:1,他引:17  
通过对综放面回采巷道围岩的深部位移、表面位移、应力分布以及支架荷载的实测分析,得出综放面回采巷道围岩力学特征分布规律.研究表明,临近工作面巷道围岩处于支承压力降低区,支架荷载下降,但支架和围岩变形最剧烈,表明巷道围岩处于岩石峰后的力学状态.围岩变形主要发生支承压力影响区,合理的巷道支护应能控制采动影响剧烈阶段的围岩变形,顺槽支护设计理念应从载荷控制向变形控制转变.  相似文献   

17.
基于沿空切顶成巷技术原理,以城郊煤矿深部工作面无煤柱开采为背景,综合运用力学分析﹑模拟计算和现场试验等方法,对深部切顶成巷围岩控制关键对策进行深入研究。结果显示:切顶留巷顶板在侧向形成短臂梁结构,降低了巷旁支护体所受压力,切缝范围内岩层垮落后碎胀充填采空区,使留巷顶板下沉量降低了约50%。采空区侧顶板为切顶巷道围岩变形的关键部位,需进行加强支护;深部切顶巷道实体煤帮塑性区范围大,通过煤帮锚索支护技术可将浅部锚杆承载层锚固在弹性区稳定煤体中;深部切顶成巷来压速度快、强度大,巷内单体支柱易造成冲击破断,采用高阻力液压支架巷内临时支护时可较好地抵抗深部强动压;巷旁刚性挡矸装置因无法适应深部围岩大变形而受压弯曲破坏,深部切顶巷道巷旁挡矸结构需实现一定的竖向让位卸压方可与顶底板协调变形。在研究的基础上提出恒阻锚索关键部位支护+可缩性U型钢柔性让位挡矸+巷内液压支架临时支护+实体煤帮锚索补强的深部切顶成巷联合支护技术,并进行现场工业性试验。现场监测结果表明:留巷围岩在滞后工作面约290 m时基本稳定,且稳定后各项指标满足下一工作面使用要求。  相似文献   

18.
岩石巷道综合机械化快速掘进有助于改善采掘接续紧张的局面,而岩石硬度是影响综掘设备快速掘进的关键因素之一。针对硬岩巷道围岩岩性特点,利用超深孔预裂爆破技术,对硬岩巷道岩体强度进行弱化,并通过工程实践检验预裂效果,结果表明:硬岩巷道超深孔预裂爆破后,钻孔周围形成压碎区、裂隙区,使岩体有效强度降低,有利于综掘截割机具经济破岩;理论及数值模拟分析得出钻孔爆破后形成半径为1.8 m左右的松动破坏区;通过对新庄孜矿-812 m水平B4胶带大巷硬岩进行超深孔预裂爆破,钻孔窥视及工程验证爆破松动半径能够达到1.5~2.5 m之间,取得了良好的岩体强度弱化效果,为硬岩巷道机械化快速施工技术研究提供指导。  相似文献   

19.
Automatically formed roadway(AFR) by roof cutting with bolt grouting(RCBG) is a new deep coal mining technology. By using this technology, the broken roadway roof is strengthened, and roof cutting is applied to cut off stress transfer between the roadway and gob to ensure the collapse of the overlying strata. The roadway is automatically formed owing to the broken expansion characteristics of the collapsed strata and mining pressure. Taking the Suncun Coal Mine as the engineering background, the control effect of this new technology on roadways was studied. To compare the law of stress evolution and the surrounding rock control mechanisms between AFR and traditional gob-side entry driving, a comparative study of geomechanical model tests on the above methods was carried out. The results showed that the new technology of AFR by RCBG effectively reduced the stress concentration of the roadway compared with gob-side entry driving. The side abutment pressure peak of the solid coal side was reduced by 24.3%, which showed an obvious pressure-releasing effect. Moreover, the position of the side abutment pressure peak was far from the solid coal side, making it more beneficial for roadway stability. The deformation of AFR surrounding rock was also smaller than the deformation of the gob-side entry driving by the overload test. The former was more beneficial for roadway stability than the latter under higher stress conditions. Field application tests showed that the new technology can effectively control roadway deformation. Moreover, the technology reduced roadway excavation and avoided resource waste caused by reserved coal pillars.  相似文献   

20.
跨采软岩巷道锚注加固技术的实验研究   总被引:4,自引:0,他引:4  
针对鲍店煤化北翼采区受放顶煤工作面跨采影响的下部主要岩石集中巷,对巷道采用不同支护形式的支护效果进行了相似模拟试验研究,得到了受跨采影响的软岩巷道在不同支护条件下的变形特征,为同类软岩巷道支护提供了科学的依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号