首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oxidation of low density lipoproteins (LDL) has been implicated as a causal factor in the pathogenesis of atherosclerosis. Oxidized LDL has been found to exhibit numerous potentially atherogenic properties in vitro, including receptor-mediated uptake by macrophages. Oxidized LDL is a ligand for the class A scavenger receptor type I/II (SR-AI/II), but cross-competition studies with cultured macrophages suggested that there is an additional receptor(s) that is specific for oxidized LDL and that does not interact with acetyl LDL or other chemically modified LDL. A number of macrophage membrane proteins, including CD36, FcgammaRII-B2, scavenger receptor BI, and macrosialin/CD68, have been found to bind to oxidized LDL in vitro and have been proposed as candidate oxidized LDL receptors. However, because of overlapping ligand specificity with the SR-AI/II, it has been difficult to evaluate the relative importance of these proteins in the uptake of oxidized LDL by macrophages. In the present report, we have studied the uptake and degradation of oxidized LDL by macrophages from mice in which the SR-AI/II gene had been disrupted. The uptake of acetyl LDL was reduced by more than 80% in macrophages from scavenger receptor knockout mice, confirming that most of the uptake of acetyl LDL by macrophages can be attributed to this receptor. In contrast, the uptake of extensively oxidized LDL was reduced by only 30% and showed high affinity, saturable uptake with apparent Km of about 5 microg/ml, similar to that of the SR-AI/II. This indicates that about 70% of the uptake of oxidized LDL in macrophages is attributable to an alternate oxidized LDL receptor(s). In contrast to findings reported with CD36, mildly oxidized LDL was internalized much more slowly than extensively oxidized LDL. Unlabeled oxidized LDL, polyinosinic acid, phosphatidylserine-rich liposomes, and LDL or bovine albumin modified by fatty acid oxidation products were effective competitors for the uptake of radioiodinated oxidized LDL by macrophages from knockout mice, whereas acetyl LDL and malondialdehyde-modified LDL were relatively poor competitors. This ligand specificity differs from that of CD36-related (class B) scavenger receptors but is similar to the reported specificity of macrosialin/CD68 in ligand blots. However, the rate of uptake of oxidized LDL by knockout macrophages was not increased by phorbol ester or in thioglycollate-elicited macrophages, both of which are expected to increase the amount of macrosialin on the cell surface. In macrophages from SR-AI/II knockout mice, ligand blots of membrane proteins with iodinated, oxidized, or acetylated LDL revealed several bands, with apparent molecular size on SDS-polyacrylamide gel electrophoresis of 60, 94, 124, and 210 kDa, but none of the bands were specific for oxidized LDL. These results provide direct evidence that a receptor other than SR-AI/II is responsible for most of the uptake of oxidized LDL in murine macrophages, but further studies are needed to identify the receptor(s) involved.  相似文献   

2.
Several investigators have reported nonreciprocal cross-competition between unlabeled acetyl low density lipoprotein (LDL) and oxidized LDL for the degradation of the corresponding labeled LDLs. The failure of acetyl LDL to compete fully for the degradation of oxidized LDL has been interpreted as evidence for additional receptor(s) specific for oxidized LDL. In the present study, it is demonstrated that the ability of oxidized LDL to compete for the degradation of acetyl LDL is determined largely by its extent of oxidation. Extensively oxidized LDL competed for 90% of acetyl LDL degradation in murine macrophages, and hence there appears to be no pathway in these cells that is specific for acetyl LDL but not oxidized LDL. The reciprocal situation (competition by acetyl LDL for uptake and degradation of oxidized LDL) proved to be more complicated. Oxidized LDL is known to be susceptible to aggregation, and less than half of the aggregates found in the present experiments were large enough to be removed by filtration or centrifugation at 10,000 x g. When oxidized LDL was prepared under conditions that resulted in minimal aggregation, acetyl LDL competed for greater than 80% of oxidized LDL degradation. With more extensive oxidation and aggregation of LDL, acetyl LDL only competed for about 45% of oxidized LDL degradation, while polyinosinic acid remained an effective competitor. Individual preparations of oxidized LDL that differed in degree of oxidation were separated into aggregated and nonaggregated fractions, and it was shown that both fractions were competed to a similar degree by acetyl LDL in mouse peritoneal macrophages and in Chinese hamster ovary cells transfected with human scavenger receptor type I cDNA. Hence, aggregation by itself did not alter the apparent rate of uptake by the scavenger receptor pathway. These results indicate that the extent of oxidation of LDL affects its mechanism of uptake and that about half of the uptake of very extensively oxidized LDL appears to be via a pathway distinct from the scavenger receptor type I/II. The uptake of very extensively oxidized LDL was not affected by cytochalasin D, an inhibitor of phagocytosis. As well, it was not affected by an antibody to CD36 in human monocyte-derived macrophages or in THP-1 cells, suggesting that this alternate pathway does not involve CD36.  相似文献   

3.
Lipopolysaccharide (LPS) is cleared from the blood mainly by the liver. The Kupffer cells are primarily responsible for this clearance; liver endothelial and parenchymal cells contribute to a lesser extent. Although several binding sites have been described, only CD14 is known to be involved in LPS signalling. Among the other LPS binding sites that have been identified are scavenger receptors. Scavenger receptor class A (SR-A) types I and II are expressed in the liver on endothelial cells and Kupffer cells, and a 95-kDa receptor, identified as macrosialin, is expressed on Kupffer cells. In this study, we examined the role of scavenger receptors in the binding of LPS by the liver in vivo and in vitro. Fucoidin, a scavenger receptor ligand, significantly reduced the clearance of 125I-LPS from the serum and decreased the liver uptake of 125I-LPS about 40%. Within the liver, the in vivo binding of 125I-LPS to Kupffer and liver endothelial cells was decreased 72 and 71%, respectively, while the binding of 125I-LPS to liver parenchymal cells increased 34% upon fucoidin preinjection. Poly(I) inhibited the binding of 125I-LPS to Kupffer and endothelial cells in vitro 73 and 78%, respectively, while poly(A) had no effect. LPS inhibited the binding of acetylated low-density lipoprotein (acLDL) to Kupffer and liver endothelial cells 40 and 55%, respectively, and the binding of oxidized LDL (oxLDL) to Kupffer and liver endothelial cells 65 and 61%, respectively. oxLDL and acLDL did not significantly inhibit the binding of LPS to these cells. We conclude that on both endothelial cells and Kupffer cells, LPS binds mainly to scavenger receptors, but SR-A and macrosialin contribute to a limited extent to the binding of LPS.  相似文献   

4.
The decline of plasma fibronectin after surgery, trauma, and burn, as well as during severe sepsis after injury, appears to limit hepatic Kupffer cell phagocytic activity. Intravenous infusion of gelatin-coated particles to simulate blood-borne particulate collagenous tissue debris in the circulation after injury also depletes plasma fibronectin. We used soluble gelatin conjugated with 125I-labeled dilactitol tyramine (DLT-gelatin) as a model of soluble collagenous tissue debris. We studied its blood clearance as well as organ localization in normal and postburn rats. Fibronectin-deficient plasma harvested early after burn exhibited limited ability to support in vitro phagocytic uptake of the gelatinized microparticles by Kupffer cells in liver tissue from normal rats. However, Kupffer cells in liver tissue from normal and postburn rats phagocytized the test particles at a normal rate when incubated in normal plasma. The DLT-gelatin ligand bound to fibronectin in a dose-dependent manner as verified by its capture with anti-fibronectin coated plastic wells when coincubated with purified fibronectin. By gel filtration chromatography, the binding of fibronectin with the DLT-gelatin ligand was readily detected, resulting in the formation of a high-molecular-weight complex. In normal animals the plasma clearance and liver localization of 125I-DLT-gelatin was competitively inhibited by infusion of excess nonradioactive gelatin. The blood clearance and liver localization of the soluble gelatin ligand were also impaired after burn injury during periods of fibronectin deficiency similarly to the pattern observed with gelatin-coated microparticles. By autoradiography, the cellular site for the uptake of the 125I-DLT-gelatin was primarily but not exclusively hepatic Kupffer cells; 125I-DLT-asialofetuin and 125I-DLT-ovalbumin were removed by hepatocytes and sinusoidal endothelial cells, respectively. Thus, gelatin conjugated with 125I-DLT can be used to simulate blood-borne soluble collagenous tissue debris after burn. It rapidly binds to plasma fibronectin before its hepatic Kupffer cell removal, and its blood clearance is markedly delayed after burn injury during periods of plasma fibronectin deficiency.  相似文献   

5.
The targeted disruption of the low density lipoprotein (LDL) receptor gene in mice results in accumulation of plasma LDL cholesterol and in predisposition to diet-induced aortic atherosclerosis. Although the liver is the central organ for receptor mediated clearance of LDL, the in vivo role of other organs and tissues in LDL catabolism has not been directly studied. Since bone marrow-derived cells such as blood leukocytes and tissue macrophages express LDL receptors and contribute a large mass to the body, we designed bone marrow transplantation (BMT) experiments to reconstitute LDL receptor null mice [LDL-R(-/-)] with marrow obtained from LDL-R wild-type mice [LDL-R(+/+)] and evaluate the effects on parameters of plasma lipid metabolism. Although reconstitution of the transplanted mice with donor bone marrow cells was complete, no differences in plasma lipid levels and lipoprotein distribution were found between groups, irrespective of the diet used, and turnover studies using 125I-labeled LDL showed that LDL receptor expression by leukocytes and macrophages does not significantly contribute to plasma LDL clearance. The complementary experiment of transplanting LDL-R(-/-) marrow into C57BL/6 recipients [LDL-R(-/-)-->LDL(+/+)], performed to evaluate the role of leukocyte LDL-R in normocholesterolemic condition, also produced no effects on plasma lipid parameters. LDL binding studies using macrophages isolated from transplanted mice showed a lack of LDL-R expression. Thus, despite their large number and wide distribution, bone marrow-derived cells do not significantly influence receptor-mediated clearance of plasma LDL.  相似文献   

6.
The liver plays a decisive role in the regulation of the plasma levels of atherogenic lipoproteins. The primary liver interaction site of chylomicron remnants and VLDL remnants (beta-VLDL) is still unidentified, whereas the subsequent cellular uptake is likely to be mediated in concert by the LDL receptor-related protein and the LDL receptor. The nature of the primary interaction site of remnants (remnant receptor) might be a liver-specific proteoglycan or a liver-specific protein. Atherogenic modified LDL can be recognized by a family of scavenger receptors. A newly identified 95 kDa protein forms the most likely candidate for mediating the in-vivo uptake of oxidized LDL from the circulation and may, therefore, protect the body against the presence of oxidized LDL in the blood compartment.  相似文献   

7.
Macrophages are major precursors of foam cells in atherosclerotic lesions. Acetylated low-density lipoproteins (acetyl LDL) taken up by macrophages through scavenger receptors are degraded by lysosomes and the released cholesterol is re-esterified, leading to foam cell formation. The ability of resident peritoneal macrophages from C57BL/6CrScl mice to form foam cells in relation to the donor age was assessed by the cholesterol esterification and the metabolism of acetyl LDL. The incorporation of 14C-oleate (complexed to albumin) into cellular cholesteryl esters in the presence of acetyl LDL (100 micrograms/ml) was significantly greater in macrophages from senescent mice (24-25 months) than in cells from young (3-4 months) mice (p < .001). The degradation and cellular association of acetyl LDL by macrophages from senescent mice were significantly greater than macrophages from mature mice, (p < .001 and p < .01, respectively), whereas the binding of acetyl LDL was similar in peritoneal macrophages from mature and senescent mice. These results suggest that the uptake and degradation of acetyl LDL, and the re-esterification by macrophages increase with advancing age and that the ability of macrophages to form foam cells increases with aging. The enhanced ability of senescent macrophages to form foam cells might contribute to the development and progression of atherosclerosis related to the aging process.  相似文献   

8.
The most potent virulence factor of Pseudomonas aeruginosa, its exotoxin A (PEA), inhibits protein synthesis, especially in the liver, and is a weak T cell mitogen. This study was performed to correlate hepatotoxic and possible immunostimulatory features of PEA in vivo. Injection of PEA to mice caused hepatocyte apoptosis, an increase in plasma transaminase activities, and the release of TNF, IFN-gamma, IL-2, and IL-6 into the circulation. Most strikingly, liver damage depended on T cells. Athymic nude mice or mice depleted of T cells by anti-Thy1.2 mAb pretreatment failed to develop acute hepatic failure, and survival was significantly prolonged following T cell depletion. Neutralization of TNF or lack of TNF receptors prevented liver injury. In the liver, TNF was produced by Kupffer cells before hepatocellular death occurred. After T cell depletion, Kupffer cells failed to produce TNF. Transaminase release was significantly reduced in perforin knockout mice, and it was even elevated in lpr/lpr mice. These results demonstrate that PEA induces liver damage not only by protein synthesis inhibition but also by TNF- and perforin-dependent, Fas-independent, apoptotic signals.  相似文献   

9.
The concentration dependence and tissue distribution of high density lipoprotein (HDL) cholesteryl ester and apolipoprotein (apo) transport were determined in apoA-I knockout mice (apoA-I-/-) that lack normal HDL in plasma. Rates of HDL cholesteryl ester clearance were highly sensitive to plasma HDL cholesteryl ester concentrations with clearance rates falling by 80% in the liver and by 95% in the adrenal glands when plasma HDL cholesteryl ester concentrations were acutely raised to levels normally seen in control mice (approximately 50 mg/dl). With the exception of the brain, saturable HDL cholesteryl ester uptake was demonstrated in all tissues of the body, with the adrenal glands and liver manifesting the highest maximal transport rates (Jm). The plasma concentration of HDL cholesteryl ester necessary to achieve half-maximal transport (Km) equaled 4 mg/dl in the adrenal glands and liver; as a consequence, HDL cholesteryl ester uptake by these organs is maximal (saturated) at normal plasma HDL concentrations in the mouse. When expressed per whole organ, the liver was the most important site of HDL cholesteryl ester clearance accounting for approximately 72% of total HDL cholesteryl ester turnover at normal plasma HDL concentrations. HDL cholesteryl ester transporter activity and scavenger receptor type B1 (SR-BI) protein and mRNA levels were not up-regulated in any organ of apoA-I-/- mice even though these animals lack normal HDL.  相似文献   

10.
Apolipoprotein E (apoE), a high-affinity ligand for lipoprotein receptors, is synthesized by the liver and extrahepatic tissues, including cells of the monocyte/macrophage lineage. Inactivation of the apoE gene in mice leads to a prominent increase in serum cholesterol and triglyceride levels and the development of premature atherosclerosis. In this study, the role of monocyte/macrophage-derived apoE in lipoprotein remnant metabolism and atherogenesis was assessed. The influence of apoE gene dosage on serum lipid concentrations was determined by transplantation of homozygous apoE-deficient (apoE-/-), heterozygous apoE-deficient (apoE+/-), and wild-type (apoE+/+) bone marrow in homozygous apoE-deficient mice. The concentration of apoE detected in serum was found to be gene dosage dependent, being 3.52 +/- 0.30%, 1.87 +/- 0.17%, and 0% of normal in transplanted mice receiving either apoE+/+, apoE+/-, or apoE-/- bone marrow, respectively. These low concentrations of apoE nevertheless dramatically reduced serum cholesterol levels owing to a reduction of VLDL and, to a lesser extent, LDL, while HDL levels were slightly raised. After 4 months on a "Western-type" diet, atherosclerosis was evidently reduced in mice transplanted with apoE+/+ bone marrow, compared with control transplanted mice. To study the mechanism of the lipoprotein changes on bone marrow transplantation, the in vivo turnover of autologous serum (beta)VLDL was studied. The serum half-life of (beta)VLDL in transplanted mice, compared with control apoE-deficient mice, was shortened mainly as a consequence of an increased recognition and uptake by the liver. Analysis of the relative contribution of the liver parenchymal cells, endothelial cells, and Kupffer cells (liver tissue macrophages) indicated an increased uptake by parenchymal cells, while the relative contribution to Kupffer cells was decreased. In conclusion, macrophage-derived apoE can dose-dependently reduce hypercholesterolemia in apoE-deficient mice owing to increased recognition and uptake of (beta)VLDL by parenchymal liver cells, leading to a decreased susceptibility to atherosclerosis.  相似文献   

11.
OBJECTIVE: To investigate the transport of alpha-tocopherol in lipoproteins of rabbits under normal diet and under acute loading of cholesterol. DESIGN: Two New Zealand White rabbits were fed 14C-alpha-tocopherol acetate in a single oral dose and the recovery of radiolabel in lipoproteins and plasma was monitored. Low density lipoprotein (LDL) from these animals was obtained and labeled with [3H] cholesteryl ester. Three other rabbits were injected with this double-labeled LDL in the native form; while three other animals received this LDL in the acetylated form. RESULTS: Plasma clearance, liver uptake and levels of radiolabel in high density lipoprotein (HDL) of animals injected with 14C[3H]acetyl LDL were significantly higher than those in animals injected with 14C[3H]native LDL. Larger particles of HDL, rich in apolipoprotein E (apoE) carried significantly higher levels of both labels in rabbits injected with acetylated LDL. CONCLUSION: These results provide evidence for in vivo mechanisms of "reverse alpha-tocopherol transport", analogous to "reverse cholesterol transport".  相似文献   

12.
The processes responsible for the uptake of chylomicron remnants by macrophages were investigated using freshly isolated cells from low density lipoprotein (LDL) receptor, very low density lipoprotein (VLDL) receptor and apolipoprotein E knockout mice. In peritoneal macrophages from normal mice, the metabolism of chylomicron remnants was inhibited 40% by anti-LDL receptor antibody and 60% by a high concentration of receptor-associated protein (RAP). Together they reduced the amount processed by 70%. Digestion of cell proteoglycans decreased remnant degradation by 20% while the addition of acetyl-LDL had no effect. When LDL receptors were absent, the absolute rates of metabolism were less than that of normal cells and were not inhibited by the anti-LDL receptor antibody; the rates, however, were reduced to less than half by RAP. These suggest that the LDL receptor-related protein (LRP) or another LDL receptor family member(s) contributes to chylomicron remnant uptake and becomes the major mechanism of uptake when LDL receptors are absent. In contrast, the VLDL receptor was not involved as its absence did not affect chylomicron remnant metabolism. Similarly, the absence of apoE production did not affect the amount of remnant uptake; however, the proportion that was sensitive to RAP was eliminated. The level of LRP expression was not altered in these cells whereas there was a decrease in LDL receptors. This suggests that the apoE content of chylomicron remnants is sufficient for its recognition by LDL receptors but additional apoE is required for its uptake by the LRP and that there is an up-regulation of a non-LDL receptor family mechanism in apoE deficiency. Together these studies suggest that even in the absence of LDL receptors or apoE secretion, chylomicron remnants could contribute to lipid accumulation in the artery wall during atherogenesis.  相似文献   

13.
AIMS/BACKGROUND: The mechanism of interaction and the role played by the vesicle lipid composition for the selective association between liposomes and liver cells were studied, at the ultrastructural level, by investigating both in situ and in vitro the interaction between hepatocytes, Kupffer and endothelial liver cells with egg-phosphatidylcholine (eggPC) or eggPC/stearylamine (9:1; mol:mol) reverse-phase evaporation (REV) liposomes. METHODS: Liver cells from rats, isolated by enzymatic perfusion and purified by differential centrifugation, were incubated, in a rotating bath at 37 degrees C, with liposomes (2.5 mM final liposomal lipid concentration). Cell aliquots were withdrawn and processed for electron microscope observation at fixed time intervals. Parallel experiments were carried out by in situ liver perfusion with liposome suspensions. RESULTS AND CONCLUSIONS: Our first conclusions are: 1) lipidic composition affects the rate of liposomes uptake and internalization by hepatocytes; 2) liposome uptake by hepatocytes or Kupffer cells is likely an endocytic process; 3) endothelial cells internalize lipid vesicles as well; 4) liposome uptake was due to a phagocytic activity for all isolated liver cells, while in the in situ observation endothelial cells seem to use another mechanism (fusion); and 5) the rate of internalization is related to the viability of the treated cells. Experimental data seem to indicate that differential behaviour in the internalization of lipid vesicles exists among parenchymal, Kupffer and endothelial liver cells. These differences suggest that clearance of liposomes by these cells involves two mechanisms (i.e., endocytosis or fusion) with different rates of uptake and internalization that facilitate the design of carriers that can deliver drugs preferentially to a specific liver cell type.  相似文献   

14.
Canine monocytes from peripheral blood were stimulated by acetyl low density lipoprotein (LDL) to detect receptor-mediated uptake of lipoproteins and to clarify the role of monocytes involving in atherosclerotic lesions. Monocytes collected from peripheral blood which were treated with phorbol 12-myristate 13-acetate (PMA) took up acetyl LDL and differentiated into macrophage-like cells (foamy macrophages). Uptake of acetyl LDL was inhibited specifically by maleyl canine serum albumin (MSA) depending on its concentration. Monocytes treated with PMA did not take up native LDL. These results suggest that canine monocytes express the receptor-mediated uptake of acetyl LDL by a specific pathway (the so-called scavenger receptor) and that they play a crucial role at the initial stage of canine atherosclerotic lesions.  相似文献   

15.
The kinetic behaviour of a naproxen human serum albumin conjugate (Nap23-HSA) was investigated in rats and in isolated perfused rat livers (IPRL), as compared to its active metabolite naproxen-lysine (Nap-lysine) and free naproxen. Through covalently linking the anti-inflammatory drug naproxen to HSA, this drug can be selectively delivered to non parenchymal cells of the liver. Liver endothelial and Kupffer cells play an important role in the pathogenesis of inflammatory liver diseases. Targeting naproxen to these cells might increase its efficacy and reduce the side effects. The altered kinetic properties of Nap23-HSA, after i.v. injection of 22 mg x kg(-1), as compared to an equimolar amount of the uncoupled drug, were demonstrated in vivo by a decrease in the steady state volume of distribution (41 +/- 5 vs. 134 +/- 19 ml x kg(-1)), a decrease in its clearance (0.48 +/- 0.05 vs. 0.63 +/- 0.1 ml x min(-1) x kg(-1)), a shorter plasma half life (60 +/- 11 vs. 152 +/- 44 min) and a sustained biliary excretion. Liver targeting of Nap23-HSA was clearly demonstrated: drug content of the liver 180 min after injection was about 30 times higher for Nap23-HSA as compared to naproxen itself. The IPRL experiments showed that the Vmax of hepatic removal of the conjugate was 40 microg x min(-1) x g liver(-1). With doses below receptor saturation a rapid removal of the conjugate (t1/2 = 6 min) from the perfusion medium was found. In conclusion, this study demonstrates the saturable uptake of Nap23-HSA and its lysosomal degradation in both in vivo and IPRL experiments. Covalently linked naproxen is released as Nap-lysine. This active metabolite accumulates in Kupffer and endothelial cells in which it reaches therapeutic concentrations. Release from these cells leads to rapid uptake by hepatocytes and carrier mediated excretion into bile. Levels of Nap-lysine in bile and plasma reflect the slowest step in its generation: the proteolytic release in endothelial and Kupffer cells.  相似文献   

16.
By histopathologic, electron microscopic, and immunochemical observation, the mechanism of cellular death was investigated in thymus, spleen, and liver of mice given intraperitoneally sublethal doses of T-2 toxin, a trichothecene mycotoxin. In the thymus and spleen of mice given 5.0 mg/kg body weight of T-2 toxin and killed 12 hours later, a massive cellular destruction characterized by chromatin condensation was evident, and electron microscopy analysis revealed the presence of apoptotic bodies. In the liver of mice given 2.5 mg/kg of T-2 toxin and killed 2 hours later, the induction of apoptotic cellular lesions was observed by electron microscopy, and Kupffer cells phagocytosed the apoptotic bodies. Such lesions were not observed in the mice killed 12 hours after receiving the toxin. In situ nick translation analysis (Tunel method) revealed DNA fragmentation in thymus, spleen, and liver shortly after administration of T-2 toxin. As previously observed in vitro, these findings indicated that T-2 toxin is a potent inducer of apoptotic cell death in thymus, spleen, and liver in vivo; especially in liver, apoptosis is induced rapidly as compared with the other tissues observed, and Kupffer cells play an important role for clearance of apoptosis.  相似文献   

17.
The oral supplement of air-oxidized linoleate hydroperoxide (LHPO) given in a small quantity to rats resulted in an increase in lipid peroxides (LPO) in the plasma and liver, together with the formation of an oxidatively modified low-density lipoprotein (LDL) with a high content of conjugated diene. Both acid and neutral cholesteryl esterases (CEases) were significantly suppressed in mononuclear leukocytes (MNL), liver, and aorta of the LHPO fed-rats. Significant inverse correlation coefficients were observed between two CEases activities and plasma LPO levels. The LDL isolated from the LHPO fed-rats inhibited in vitro both acid and neutral activities most efficiently among LDL derived from the experimental groups and confirmed in vivo oxidative inactivation of the intracellular CEases, possibly by lipid hydroperoxides in LDL through its increased uptake by the cells.  相似文献   

18.
OBJECTIVES: The purpose of this study was to test the hypothesis that long-term supplementation with Vitamin E improves endothelium-dependent relaxation in hypercholesterolemia patients and/or chronic smoking, two risk factors that have been shown to be associated with increased radical formation. BACKGROUND: Experimental evidence suggests that oxidized low density lipoprotein (LDL) impairs endothelium-dependent relaxation, and vitamin E, a lipid-soluble antioxidant, reduces the oxidation of LDL. METHODS: Thirteen subjects with hypercholesterolemia, 14 smokers and 15 hypercholesterolemic smokers were enrolled in a double-blind, placebo-controlled study. After baseline measurements of plasma autoantibodies against oxidized LDL and assessment of endothelium-dependent relaxation using intra-arterial forearm infusions of acetylcholine, participants within each group were randomly assigned in a 1:2 fashion to receive either placebo or vitamin E for 4 months, when plasma levels of autoantibodies against oxidized LDL and vascular function were reassessed. RESULTS: Vitamin E significantly augmented endothelium-dependent relaxation in hypercholesterolemic smokers but not in patients with either hypercholesterolemia or chronic smoking. At baseline, hypercholesterolemic smokers had significantly higher autoantibody levels against oxidized LDL (compared with the other two groups), which were significantly reduced after 4 months of vitamin E supplementation. There was a significant relationship between improvement in acetylcholine-induced vasodilation and the change in autoantibody titer against oxidized LDL (r = -0.59; p = 0.002). CONCLUSIONS: Long-term vitamin E supplementation improves endothelium-dependent relaxation in forearm resistance vessels of hypercholesterolemic smokers, which are characterized by increased levels of autoantibodies against oxidized LDL. These findings may suggest that the beneficial effect of vitamin E is confined to subjects with increased exposure to oxidized LDL.  相似文献   

19.
Truncations of apolipoprotein (apo) B shorter than 3200 amino acids (3200/4536 = apoB-70) do not possess the LDL receptor-recognition domain and are not recognized by altered cells with normally functioning LDL receptors. To ascertain which organs remove such truncated apoB-containing particles, we isolated apoB-31-, apoB-38.9-, and apoB-43.7-containing particles from plasmas of familial hypobetalipoproteinemia heterozygous humans by a combination of sequential ultracentrifugation and preparative electrophoresis. Particles with labeled 125I- or 131I-dilactitol tyramine (I-DLT), were injected into New Zealand White rabbits, along with I-DLT-apoB-100-containing LDLs, and the decay of 125I- and 131I-TCA-precipitated counts was followed over 24 hours. At the end of 24 hours, rabbits were anesthetized and their bodies perfused. Organs were removed and homogenized, and TCA-precipitable counts determined. Fractional catabolic rates of apoB truncation particles were two to five times greater than those of apoB-100 LDLs. ApoB truncations accumulated in adrenals at one fifth the rates of apoB-100 LDL, compatible with the functional absences of LDL receptor-recognition domains in truncated apoBs. The major organ of uptake for apoB-100-LDLs was the liver, whereas truncation particles were readily removed by the kidney (kidney: liver uptake ratios were 0.10 to 0.30 for apoB-100 LDLs and 1.03 to 3.77 for truncations). Spleens accumulated little of either apoB-100 or truncation particles, suggesting particles were not "damaged" or aggregated. Thus, the absence of > 56% of the carboxyl end of apoB-100 increases the plasma clearance and redirects the organ uptake of the apoB truncation-containing lipoproteins from liver to kidney.  相似文献   

20.
Chylomicrons have been shown to protect mice and rats against a lethal dose of lipopolysaccharide and may serve as a therapeutic means to protect against endotoxemia. However, the requisite of isolation from human lymph hampers pharmaceutical application. Recently, we developed recombinant chylomicrons from commercially available lipids and human recombinant apolipoprotein E. The current study explored the effectiveness of these apoE-enriched emulsions in redirecting LPS from Kupffer cells to liver parenchymal cells. Upon injection into rats, 125I-LPS rapidly and specifically associated with the liver (64.3+/-3.1% of the injected dose) and spleen (4.1+/-0.7%). The uptake of LPS by the spleen was four- to fivefold reduced upon incubation with the apoE-enriched emulsion or free apoE (P < 0.0001), but not with emulsion alone or Lipofundin. Within the liver, 125I-LPS mainly associated with Kupffer cells. The uptake by Kupffer cells was eight- to ninefold reduced by the apoE-enriched emulsion or apoE alone (P < 0.01), and a 19.6-fold increased uptake ratio by liver parenchymal cells over Kupffer cells was observed. The emulsion without apoE had no effect on the in vivo kinetics of LPS. LPS interacted selectively with the apoE moiety of the recombinant chylomicron. Emulsion-associated and free apoE bound approximately two molecules of LPS, possibly by its exposed hydrophilic domain involving arginine residues. We anticipate that the protecting effect of endogenous chylomicrons against LPS-induced endotoxemia may result from the apoE moiety and that human recombinant apoE may serve as a therapeuticum to protect against endotoxemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号