首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
一种频率选择性衰落信道下的盲自适应去相关Rake接收机   总被引:1,自引:0,他引:1  
王伶  焦李成  刘芳 《通信学报》2002,23(6):42-50
多用户检测是DS-CDMA系统中的一项关键技术,而Rake接收是解决多径效应的一种有效方法,本文将基于Kalman滤波的多用户检测器与Rake接收相结合,提出了一种频率选择性衰落信道下的盲自适应去相关Rake接收机,研究结果表明,这种接收机具有较强的抑制多址干扰和克服“远-近”效应能力,并且能快速收敛。  相似文献   

2.
于文君  何培宇  黄如浩 《信号处理》2010,26(8):1275-1280
针对MIMO系统,提出了一种改进的基于子空间的盲MMSE空时多用户检测算法。该算法结合MIMO系统的空间分集技术与Alamouti空时分组码方案,预估计MIMO信道信息并对信号子空间进行预处理,使用正交性能和稳态性能较好的NOOja算法跟踪信号子空间,在自适应过程中对特征值矩阵进行优化,去除迭代带来的噪声,解决了跟踪过程中信号特征值矩阵的近似估计会带来检测器性能恶化的问题。仿真结果表明这种算法,能有效地抑制多址干扰,抗远近效应能力强,尤其在低信噪比、远近效应明显的恶劣环境下,有稳定良好的性能表现。   相似文献   

3.
In this work, the problem of joint suppression of multiple-access and narrow-band interference (NBI) for an asynchronous direct-sequence code-division multiple-access (CDMA) system operating on a frequency-selective fading channel is addressed. The receiver structure we consider can be deemed as a two-stage one: the first stage consists of a bank of minimum mean-square-error (MMSE) filters, each keyed to a given replica of the useful signal, and aimed at suppressing the overall interference; the second stage, assuming knowledge of the fading channel coefficients realizations, combines the MMSE filters outputs according to a maximal-ratio combining rule. Due to the presence of the NBI, the resulting structure is in general time-varying, and becomes periodically time-varying if the NBI bit-rate has a rational ratio to that of the CDMA system. Moreover, enlarging the observation window beyond the signaling interval and oversampling the signal space may yield a noticeable performance improvement. For the relevant case that the said ratio is rational, a new cyclic blind recursive least squares (RLS)-based algorithm is introduced, capable of tracking the periodically time-varying receiver structure, and allowing adaptive interference cancellation with a moderate complexity increase. We also come up with a closed-form expression for the conditional bit-error rate (BER), which is useful both to evaluate semi-analytical methods to assess the unconditional BER and to derive bounds on the system near-far resistance. The results indicate that the receiver achieves very satisfactory performance in comparison to previously known structures. Computer simulations also demonstrate that the cyclic blind RLS algorithm exhibits quite fast convergence dynamics  相似文献   

4.
本文在最小二乘恒模(LSCMA)和梯度下降法(SDCMA)的基础上,提出了一种基于预解扩的判决反馈盲自适应波束形成算法,称为LS—SDCMA。本文分别在加性白高斯和多径衰落信道的环境中进行了仿真,仿真结果表明,本文提出的LS—SDCMA算法比传统的LSCMA、OCMA和SDCMA算法具有较强的抗多址干扰能力。  相似文献   

5.
The convergence problem of minimum mean square-error (MMSE) receivers is discussed, and to overcome the problem, a constrained MMSE receiver is proposed. In addition, we propose the orthogonal decomposition-based least mean square algorithm to implement the constrained MMSE receiver adaptively. Through computer simulations, it is shown that the proposed receiver provides significant performance improvement in the bit-error rate over the conventional matched filter receiver and currently available MMSE receivers.  相似文献   

6.
为有效抑制直接序列扩频通信中的窄带干扰,论文提出了一种改进的盲自适应窄带干扰抑制方法.该方法在盲自适应滤波器的基础上,通过引入非线性预测算法对接收信号进行处理,提高了滤波器的干扰抑制性能.计算机仿真结果验证了文中方法的有效性.  相似文献   

7.
陈晟  梁树雄  朱跃生 《通信学报》2009,30(10):96-99
提出了一种用于无线快衰落信道的快速自适应估计新算法--拆分基展开递推最小二乘法.该算法通过利用多径信道之间相互独立的特性,减少了传统基展开递推最小二乘法在相关运算过程中的冗余.实验结果表明,提出的新算法与传统的基展开递推最小二乘法比较,在得到同样信道估计精确度的条件下,算法的复杂度降低了约80%.  相似文献   

8.
A technique that can suppress multiple-access interference (MAI) in space-time block-coded (STBC) multiple-input-multiple-output (MIMO) code-division multiple-access (CDMA) systems is developed. The proposed scheme, called a constrained minimum mean square error (CMMSE) receiver, is an extension of the CMMSE receiver for a single-input-single-output system to MIMO systems. It is shown that the complexity of the proposed CMMSE receiver is almost independent of the number of transmitter antennas. The advantage of the proposed receiver over the existing receivers for STBC CDMA systems is demonstrated by comparing the closed-form expressions of the signal-to-interference plus noise ratio and simulated bit error rates. The results indicate that the proposed CMMSE receiver can provide a significant performance improvement over the conventional receivers and that the gain achieved by suppressing the MAI can be larger than that from increasing the transmitter or receiver diversity.  相似文献   

9.
主要介绍三种面向非正交多脉冲调制(NMM)系统的非相干最小均方误差(MMSE)多用户检测器,它们均采用MMSE预滤波器(per-filter),但分别满足三种不同的非相干判决准则。其中最简单的判决准则是最大(MM)准则,另外两种则需要考虑MMSE滤波后的残余多用户干扰(MAI)的二阶统计量。然后介绍一种基于随机估计方法的盲自适应算法。最后对这三种判决准则进行性能分析。  相似文献   

10.
A new nonlinear adaptive minimum mean squared error (MMSE) receiver performing a successful cancellation of multiple access interference in multipath fading channels is proposed. It is observed that the proposed receiver could achieve a significant performance gain over any currently used adaptive MMSE receivers, at the cost of a relatively small increase in complexity and modification of the conventional DS/CDMA system  相似文献   

11.
As the Projection Approximation Subspace Tracking with deflation(PASTd) algorithm is sensitive to impulsive noise, an improved subspace tracking algorithm is proposed and applied to blind adaptive multi-user detection. Simulation results show that the improved PASTd algorithm not only remains the properties of the conventional PASTd algorithm, but also has good Bit Error Rate(BER) performance in impulsive noise environment, thus it can effectively improve the system performance.  相似文献   

12.
Adaptive multi-user detection techniques for interference suppression in direct-sequence code division multiple access (DS-CDMA) systems have gained much attention since they do not require any information on interfering users. In the uplink of DS-CDMA systems, however, the base station receiver typically knows the spreading waveforms of the users within its cell but does not know those of the users in other cells. We propose a partial zero-forcing adaptive minimum mean squared error (MMSE) receiver for the DS-CDMA uplink utilizing the spreading waveforms known at the base station as well as training data. The proposed receiver first removes the intracell interference using a linear filter based on the knowledge of the spreading waveforms of the interfering users within the cell. Then the intercell interference remaining in the output of the linear filter is mitigated by adaptive MMSE detection. To speed up the convergence of the adaptive filter weights without loss of the steady-state performance, we develop a modified least mean square (LMS) algorithm based on the canonical representation of the filter weights. It is shown through analysis and simulation results that the proposed receiver improves the convergence speed and the steady-state performance.  相似文献   

13.
This paper analyzes the performance of a convolutionally coded code-division multiple-access system, which employs a linear, minimum mean-square error (MMSE) receiver for interference suppression. A flat, Rayleigh fading channel is considered, where convolutional encoding and interleaving are employed in order to combat the effects of the fading. Theoretical results are derived for the average bit-error probability of the MMSE receiver, where the optimum tap weights for the adaptive filter are determined by the solution of the Wiener-Hopf equations. Simulation results showing the average bit-error rate of the MMSE receiver are also presented, which incorporate the effects of recursive least squares adaptation, channel estimation using pilot symbol-assisted modulation, and finite interleaving. Results show that the MMSE receiver with coding can provide a substantial gain over the matched-filter receiver in a rapidly varying, Rayleigh fading channel. The results also reiterate the fact that lower rate codes are not necessarily the best choice when used with the MMSE receiver  相似文献   

14.
Abstract-The capacity of conventional wireless communications systems based upon Direct-Sequence Code Division Multiple Access (DS-CDMA) schemes, is mainly limited by Multiple Access Interference (MAI). Therefore, methods aimed at reducing MAI are mandatory solutions to increase the capacity of such systems. Smart Antennas are a promising technology for improving the performance of high capacity mobile communications systems, because they are expected to be able to increase the Signal to Interference plus Noise power Ratio (SINR) of the received signals by dynamically adapting the equivalent array beam pattern in order to track the movements of the users within the cell. In this paper we propose a novel blind adaptive beamforming algorithm tailored for the up-link of multi-code multi-rate DS-CDMA wireless communications systems. Our proposal is based upon a modified Constant Modulus (CM) criterion, whose fundamental feature is the capability to overcome the main drawback of the classic CM algorithm, which lies in its difficulty of ensuring the convergence toward the desired user. The proposed algorithm exploits user-specific information intrinsically known at the receiver, which is the code uniquely associated to each user, without requiring the knowledge of the spatiotemporal propagation channel nor any specific training sequence. Within this paper we present a broadband solution, designed to temporally re-align uncorrelated clusters of multipaths, as well as spatially recombine correlated multipaths belonging to the same cluster. Computer simulations show that our proposed technique can effectively exploit path diversity and multipath correlation, also in the presence of Doppler effect and time-variable propagation conditions.  相似文献   

15.
We consider the application of the sequential Monte Carlo (SMC) methodology to the problem of blind symbol detection in a wireless orthogonal frequency-division multiplexing (OFDM) system over a frequency-selective fading channel. Bayesian inference of the unknown data symbols in the presence of an unknown multipath fading channel is made only from the observations over one OFDM symbol duration. A novel blind SMC detector built on the techniques of importance sampling and resampling is developed for differentially encoded OFDM systems. The performance of different schemes of delayed-weight estimation methods is studied. Furthermore, being soft-input and soft-output in nature, the proposed SMC detector is employed as the first-stage demodulator in a turbo receiver for a coded OFDM system. Such a turbo receiver successively improves the receiver performance by iteratively exchanging the so-called extrinsic information with the maximum a posteriori (MAP) outer channel decoder. Finally, the performance of the proposed sequential Monte Carlo receiver is demonstrated through computer simulations  相似文献   

16.
Previous results have shown that high rate codes tend to yield a lower average bit-error rate than low rate codes when employing a minimum mean-square error (MMSE) receiver for a direct-sequence code-division multiple-access (CDMA) system in either an additive white Gaussian noise channel or a flat Rayleigh fading channel. we consider the use of larger signal constellations with both trellis-coded modulation and bit-interleaved coded modulation (BICM) to determine if further gains can be achieved in either the Rayleigh or Ricean fading channel. The average bit-error probability is derived for both coding schemes using the general Ricean fading channel model, based upon the common assumptions of infinite interleaving, perfect channel state information, and optimal MMSE receiver coefficients. New bounds are presented for BICM with 8-PSK and 16-QAM symbols, which take advantage of the symmetries inherent in the signal constellations with Gray code mapping. In addition, simulation results are presented which show the important effect a finite interleaving delay constraint has on the comparison of various codes. The results show that there are cases when coded modulation does yield a significant improvement in performance for a CDMA system using an MMSE receiver, compared to standard convolutional coding. However, the best coding strategy depends upon several factors, including the nature of the fading process (Rayleigh or Ricean), the operating signal-to-noise ratio, the interleaving delay constraint, the time-variability of the channel, the number of users in the system, and the severity of the near-far problem.  相似文献   

17.
The design of a blind receiver for coded orthogonal frequency-division multiplexing communication systems in the presence of frequency offset and frequency-selective fading is investigated. The proposed blind receiver iterates between a Bayesian demodulation stage and a maximum a posteriori channel decoding stage. The extrinsic a posteriori probabilities of data symbols are iteratively exchanged between these two stages to achieve successively improved performance. The Bayesian demodulator computes the a posteriori data symbol probabilities, based on the received signals (without knowing or explicitly estimating the frequency offset and the fading channel states), by using Markov chain Monte Carlo (MCMC) techniques. In particular, two MCMC methods-the Metropolis-Hastings algorithm and the Gibbs sampler-are studied for this purpose. Computer simulation results show that the proposed Bayesian blind turbo receiver can achieve good performance and is robust against modeling mismatch  相似文献   

18.
This paper deals with an adaptive multi-user detector for direct sequence code division multiple access (DS/CDMA) wireless communication systems, named advanced blind adaptive multi-user detector (ABA-MUD), whose main features are low complexity and joint utilization of time diversity and adaptive blind processing techniques. Differently from known blind adaptive detectors, the proposed scheme achieves remarkable performance even in critical time-varying environments by means of a suitable window reprocessing technique. The ABA-MUD avoids the use of training sequences and only needs knowledge of timing and signature waveform of the desired user, number of active users and a rough evaluation of the signal-to-interference ratio (SIR) for a proper setting of the detection algorithm. Numerical results, shown here in terms of bit error rate (BER), highlight good behavior and remarkable near-far resistance of the proposed ABA-MUD receiver with respect to different alternatives, in particular, in the case of worst fading environments  相似文献   

19.
Motivated by the fact that time delays in a practical direct-sequence code-division multiple-access (DS-CDMA) system can never be perfectly estimated, an improved minimum-mean squared-error (MMSE)-based receiver is proposed and analyzed. Via the simple assumption of a probability distribution for the delay estimation errors, the proposed receiver can achieve a performance superior to that of the conventional MMSE (CMMSE) receiver. The performances of this improved receiver and the CMMSE receiver are compared in terms of the mean squared error (MSE), probability of error, and asymptotic multiuser efficiency (AME). As the original definition of AME does not consider mismatched channels, the behavior of three single-user receivers bearing imperfect delay estimation is also investigated. These single-user receivers are employed to define a more appropriate AME. Finally, an efficient update mechanism to accommodate dynamic channel statistics, and thus practical implementation, is proposed  相似文献   

20.
For wireless multiple‐input multiple‐output (MIMO) communications systems, both channel estimation error and spatial channel correlation should be considered when designing an effective signal detection system. In this paper, we propose a new soft‐output MMSE based Vertical Bell Laboratories Layered Space‐Time (V‐BLAST) receiver for spatially‐correlated Rician fading MIMO channels. In this novel receiver, not only the channel estimation errors and channel correlation but also the residual interference cancellation errors are taken into consideration in the computation of the MMSE filter and the log‐likelihood ratio (LLR) of each coded bit. More importantly, our proposed receiver generalizes all existing soft‐output MMSE V‐BLAST receivers, in the sense that, previously proposed soft‐output MMSE V‐BLAST receivers can be derived as the reduced forms of our receiver when the above three considered factors are partially or fully simplified. Simulation results show that the proposed soft‐output MMSE V‐BLAST receiver outperforms the existing receivers with a considerable gain in terms of bit‐error‐rate (BER) performance. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号