首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
一种利用恒星进行遥感卫星辐射定标的方法   总被引:1,自引:1,他引:0  
恒星巡天测量与模型分析显示大量恒星在0.3~35μm波段内的绝对辐射精度达到3%,在可见光波段接近1%.恒星与恒星之间的相对辐射定标精度优于0.2%.部分恒星具有极好的辐射稳定性,可以作为长期稳定的辐射基准.但是恒星有效亮度通常比地面目标低几个量级,并且恒星一般不会直接出现在遥感卫星视场,不利于用作定标源.这里讨论的利用恒星进行辐射定标的方法是在遥感卫星上安装一个与遥感相机波段接近的微型定标相机,它的指向可以通过转动机构在恒星与地面目标之间转换.在观测恒星时通过延长积分时间来获取高信噪比信号,在观测地面目标时由于和遥感相机同时同视场观测有利于精确交叉定标.这个方法可以将作为标准源的恒星辐射直接传递到观测目标.目前分析显示最佳定标精度可以达到2%以内.  相似文献   

2.
马秀秀  王海燕  韩启金  张学文  赵航  徐兆鹏  曾健  马灵玲  王宁 《红外与激光工程》2023,52(4):20220644-1-20220644-11
以GF5B卫星发射前实验室定标为基础,采用星上0级黑体定标数据,建立了适用于GF5B热红外通道的星上绝对辐射定标模型。通过对2022年01月12日星上黑体定标数据进行处理,获得成像仪热红外通道的绝对辐射定标系数。对星上定标系统精度进行分析,并采用地面同步烟台浮标数据对定标结果进行精度验证,结果表明,在轨后星上定标系统的绝对定标精度为0.9 K;星地验证结果显示B11和B12通道亮温的偏差分别为0.33、0.77 K。说明基于星上黑体的定标方法具有较好的精度,定标结果可靠,可满足遥感数据定量化应用的需要,为实时准确获取热红外通道定标系数提供了方法借鉴。  相似文献   

3.
《现代电子技术》2019,(8):113-117
"高分四号"是我国高分辨率对地观测系统中唯一一颗地球同步轨道遥感卫星,应用于环境及林火监测等领域。GF-4数据有很高的空间分辨率,但是辐射特性存在偏差从而导致辐射精度并不是很高。为了提高GF-4卫星数据辐射和LandSat8数据为基准影像,以敦煌辐射校正场作为试验区对GF-4可见光及近红外谱段进行交叉辐射定标。结果表明,通过GF-4的DN值与MODIS和LandSat8的表观辐射亮度数据分析对比,的可见光及近红外波段的定标误差均在10%以内;而LandSat8的可见光及近红外波段的定标误差均在5%以内,比的定标精度接近官方定标系数,满足遥感定量需求。  相似文献   

4.
海洋卫星COMs-1(Communication, Ocean &Meteorological Satellite-1)上携带的GOCI(Geostationary Ocean Color Imager)传感器以海洋监测为主,也具备较好的陆地监测潜力,但传感器陆地辐射特性存在偏差。为改善GOCI陆地辐射特性,基于MODIS数据,对GOCI可见光和近红外波段开展交叉辐射定标,弥补场地定标成本较高、定标参数更新周期长的不足,拓展其陆地定量遥感监测能力。交叉辐射定标中,考虑GOCI和MODIS传感器相应波段光谱响应函数之间的匹配; 通过辐射传输模拟,订正两传感器观测角度对辐射定标的影响;通过选取两传感器同一过境时刻的数据,降低太阳角度对辐射定标的影响,提高交叉定标精度。通过MODIS数据模拟的GOCI相应波段的表观辐亮度与GOCI实测结果比对,R2大于0.88。对定标结果进行初步验证,表明交叉辐射定标后,GOCI陆地上的辐射特性满足基本的定量遥感需求。  相似文献   

5.
中巴地球资源卫星热红外通道的交叉辐射定标   总被引:2,自引:5,他引:2  
以TERRA MOD IS传感器热红外31通道为参考标准,完成对CBERS-02 IRMSS传感器热红外通道的交叉辐射定标.在与MOD IS相应通道的交叉辐射定标中选取了2004年8月~12月间的7次双星同步观测青海湖和太湖的昼夜数据,通过两传感器相应通道间的光谱匹配,利用MOD IS数据推算IRMSS的入瞳辐亮度,再从IRMSS影像上提取对应的DN值.对交叉定标获取的数据,进行多点线性回归,获得定标系数:增益8.0567,单位:DN/(W/m2/sr1/μm1);截距47.892,单位:DN.并对定标数据进行了精度评价和检验,结果表明该方法所获取的定标系数精度与MOD IS定标数据相当,可以满足定量化应用的需要.  相似文献   

6.
风云三号气象卫星红外分光计在轨交叉定标精度监测系统   总被引:1,自引:0,他引:1  
为了满足定量遥感对红外探测仪器定标精度监测的需求,采用风云三号气象卫星红外分光计(IRAS)与国际基准红外高光谱探测仪器进行交叉比对的方法,建立了FY-3C气象卫星红外分光计与高光谱仪器IASI的在轨交叉定标精度监测系统.通过对2014年一年的IRAS观测数据的定标精度监测和分析,结果显示,IRAS与IASI的相关系数均在0.98以上,通道1和18的定标偏差最大,分别为-3.7 K和2.1 K,通道9和16也有超过1K的偏差,其他通道的平均偏差均在1 K以内.地表观测通道8、9、18、19、20由于受卫星观测时空变化频繁的影响偏差标准差较大,在1.5~3 K左右,其他通道观测误差稳定性较好,均在1.5 K以内.通道2、3、4,10~13的定标偏差随目标亮温变化趋势不明显,通道14~20定标偏差随目标亮温变化趋势最强,最低和最高目标亮温对应的定标偏差之间的差别最大可达到5 K.定标偏差的时间序列分析表明大部分通道的定标偏差在一年的时间内保持稳定,变化幅度不超过0.3 K;通道15、19、20的定标偏差变化幅度约为1 K,通道1、14、16、17、18定标偏差一年的变化范围达到2~4 K.总之,在轨交叉定标精度监测系统为实时监测定标精度的变化提供了有效工具,为诊断仪器性能和改进定标方案提供了参考依据.  相似文献   

7.
吕原  丛明煜  赵旖旎  牛凯庆  路子威 《红外与激光工程》2022,51(7):20220395-1-20220395-14
辐射定标技术是实现定量遥感的关键环节。近年来,随着红外遥测技术愈发成熟,星上红外辐射定标已成为空间定量遥感技术的重要发展方向。文中从红外相机实时绝对辐射定标的背景出发,提出了半光路星上绝对辐射定标和基于多温度场的场地绝对辐射定标方法,结合实验数据,分别采用星上定标、场地定标、交叉定标三种方案进行在轨绝对辐射定标实验验证,并对其适用场景进行了分析。结果表明,通过结合半、全光路定标数据处理和转换技术,利用水面场和陆面场的场地绝对辐射定标方法,优选合适的定标场地,同时在陆面场中增加典型地物场景实现多温度场定标的方法,所提出的辐射定标方法实现了实时高精度绝对辐射定标,定标精度优于1.5 K。  相似文献   

8.
傅里叶变换高光谱仪器在定量化遥感领域展现出极大的优势,非线性校正是保证在轨辐射定标精度不可缺少的过程。针对搭载于风云四号静止轨道干涉式红外探测仪(FY-4/GIIRS)运行轨道受日晒分布不均匀、仪器环境温度日变化剧烈的特点,推导出一种基于仪器光谱响应率修正的非线性校正算法,通过测量一组标准参考辐射源光谱量化值和光谱响应率,拟合得到光谱响应率一次项修正系数。在仪器环境温度变化后,利用一次项修正系数、黑体观测光谱值和黑体观测光谱响应率重新计算光谱响应率常数项修正系数,就可以得到任意仪器环境温度下的仪器非线性校正系数。经仪器发射前地面热真空(TVAC)定标试验数据验证,该算法简单有效,在各试验环境温度工况下,对180~320 K观测范围内的辐射定标精度均有明显的提高。  相似文献   

9.
红外高光谱成像仪的系统测试标定与飞行验证   总被引:1,自引:0,他引:1  
红外谱段是高光谱遥感中非常有用的波段,由于红外波段的能量小、焦平面探测器研制难、红外背景辐射大等原因,红外谱段的高光谱成像系统并不常见,目前仍然处于仪器发展阶段.本文介绍了一台机载热红外高光谱成像仪,它在8.0~12.5μm的光谱范围内可得到180个波段的光谱信息,光谱分辨率优于44 nm,光谱定标精度优于1 nm.仪器观测总视场14°,空间分辨率优于1 mrad,噪声等效温差优于0.2 K@300 K(平均).仪器于2015年5月开展了实验室辐射标定和光谱标定,并于2015年6月在中国浙江舟山开展了飞行试验,获取了指定区域的红外高光谱图像,处理结果表明红外高光谱数据立方体可以有效地反演地表温度和地表辐射率,反演的发射率曲线可以用于地物识别.  相似文献   

10.
紫外高光谱探测仪在轨运行时通过地球光观测光路和太阳光观测光路获取辐射和光谱信息, 因此在发射前需 对载荷进行实验室定标。定标后获取的辐照度定标系数将用于在轨计算获取反演所需的太阳参考谱, 定标精度直接 影响仪器在轨探测及数据反演精度, 决定着获取的遥感信息的可靠性。采用直接发散光辐照度定标方法, 搭建二维定 标平台对定标光路进行不同角度、距离的标准灯测试, 将三个距离下的实验值借助最小二乘法线性拟合得到辐照度 定标系数, 并对系数进行角度等因素的校正。测试结果表明合成不确定度为 3.42%, 符合辐射定标要求, 表明了方法的 可行性。  相似文献   

11.
近红外光谱技术在水果品质无损检测中应用的研究与现状   总被引:6,自引:0,他引:6  
付兴虎付广伟  毕卫红 《红外》2006,27(2):33-37,48
简单概述了我国水果产业的发展现状,着重阐述了国内外利用近红外光谱技术进行水果品质无损检测的最新研究进展,分析了当今研究中存在的问题,并对利用近红外光谱技术进行水果检测的前景进行了展望,提出了一些建议。  相似文献   

12.
基于星载差分吸收光谱仪转动部件控制需求,设计了星载光谱仪转动部件的测试系统。采用微动开关复位加定步的电机运动方式实现电机的精确定位。采用脉冲调制(PWM)的方式实现驱动电流的精细调节。并搭建平台对系统进行重复性测试,实验结果表明,测试系统具有较高的可靠性和稳定性,能够满足光谱仪的精确定位要求,使电机在工作寿命内按计划完成定标工作。  相似文献   

13.
“计算机组成原理”设计性实践教学模式研究   总被引:1,自引:0,他引:1  
本文阐述了"计算机组成原理"设计性实验教学的重要性,对设计性实验教学的目的和基本特征进行了归纳,对"计算机组成原理"设计性实验教学的现状进行了调查,对存在的问题进行了较深入的分析;在此基础上.对组成原理设计性实验的教学模式进行了研究,对设计性实验的体系进行了初步设计,并对"计算机组成原理"设计性实验的实施方法进行了探讨.  相似文献   

14.
刘启能 《激光技术》2008,32(3):327-327
为了研究杂质的吸收对光子晶体滤波器设计的影响,引入复折射率并利用特征矩阵法,计算了滤波透射峰的峰值和半峰全宽。滤波透射峰的峰值随杂质的消光系数增加而迅速减小,滤波通道透射峰的半峰全宽随消光系数增加而增大,滤波透射峰的峰值和半峰全宽都随吸收杂质的光学厚度的增加而减小。结果表明,设计光子晶体滤波器时,必须考虑杂质吸收这一重要因素,应选择消光系数小于0.002的掺杂材料,并且杂质的光学厚度应设计在2(λ0/4)左右。  相似文献   

15.
近年来,在线学习掀起了一场席卷全球的教育革命,MOOC/SPOC、翻转课堂、混合式教学对高等教育带来了前所未有的冲击。电子技术基础实验课程地位特殊,传统教学方式已无法满足创新性人才培养的需要,文章从其教学特点出发,提出了“线上教学+自主实验+翻转课堂”的混合式教学模式,同时还阐述了与此密切相关的集约化线上教学资源平台、智能化翻转教学环境以及多元化过程性考核评价机制三个重要环节。经研究发现,学生的课堂主动参与度、自主学习能力、创新思维能力、动手实践能力以及教师的教学创造力得到全面提升。教学环境支持课堂互动和全周期教学行为数据采集,体现了教学过程的信息化、教学实施的精准化和教学评价的客观化,实现了信息技术与实验教学的深度融合。  相似文献   

16.
利用电磁脉冲的口径瞬态辐射场计算公式,针对圆形口径的线性相移、平方律相移等非同相口径场情况,计算了辐射高斯脉冲时的能量方向图、半能量波瓣宽度、面积利用系数等参数.计算表明,对于圆形口径非同相口径场,最大辐射场的方向为口径面法线方向,同时能量方向图关于口径面法线方向对称;随着口径的增大,波瓣变窄,无副瓣;随着平方律相移的滞后参数的增加,波瓣变宽,主瓣不分裂.  相似文献   

17.
Sn-Zn-Ag系无铅钎料焊接性能研究   总被引:8,自引:1,他引:7  
讨论了电子软钎料的钎焊性能及其影响因素,并采用铺张面积法对Sn-Zn-Ag系钎料钎焊性能进行评估。钎料的钎焊性能很大程度上取决于钎料对基板的润湿性能,而润湿性能与液态钎料在基板上的液、固、气三相界面的界面张力有关。对润湿角(θ)与铺展面积(S)之间的关系进行了探讨。  相似文献   

18.
本文在讨论机载雷达地面杂波回波的基础上,分析了AMTI和ADPCA系统的性能。对这两个系统从原理上,并利用计算机模拟结果及实验结果进行了比较。本文将有助于工程实现。  相似文献   

19.
严佳婷 《电子测试》2013,(20):119-120
上市公司为了增强市场竞争力,不断扩大生产规模,追求规模经济,但是由于我国较低生产力水平、政府干预、体制等原因,上市公司的规模经济效果并不明显。同时,20世纪90年代以来,科学技术的日益发展,改变了企业发展的外部环境和条件,使得规模经济的实现方式发生了新的变化。在信息化时代下,规模经济理论需要进一步创新和拓展,企业按照新形势来选择合适的经济规模。  相似文献   

20.
凋亡神经元线粒体超微结构的形态计量学分析   总被引:1,自引:0,他引:1  
目的:观察并分析人大脑皮层凋亡神经元线粒体超微结构的形态计量学变化.方法:取21例脑外科手术患者的额叶大脑皮质超薄切片中的正常神经元和凋亡神经元的电镜照片各80张,分为对照组与凋亡组.采用形态计量学方法对两组神经元的细胞体、细胞核、线粒体及细胞质基质灰度进行分析.结果:与正常神经元相比,凋亡神经元线粒体的体密度、面密度、数密度、比膜面明显增大(P<0.01),比表面无明显改变(P>0.05),线粒体基质与细胞质基质灰度之差明显增大(P<0.01).结论:凋亡神经元线粒体未发生明显肿胀或增生,但其内膜和嵴的面积明显增加,基质密度降低.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号