首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
TiO2 nanorod arrays (TiO2 NRAs) were synthesized through a hydrothermal method. Ag2S and Bi2S3 were then grown on the surface of TiO2 NRAs with successive ionic layer adsorption and reaction method. The pristine rutile TiO2 NRAs, Ag2S/TiO2, Bi2S3/TiO2, and Bi2S3/Ag2S/TiO2 electrodes were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, ultraviolet–visible absorption spectroscopy, and electrochemical analysis. According to photoelectrochemical (PEC) measurement, an enhanced short circuit current density was obtained for the co-sensitized TiO2 NRAs under simulated sunlight illumination, which was 10.7 times higher than that of the TiO2 NRAs. Appropriate potential positions of conduction band and valence band of Bi2S3 that match well those of rutile TiO2 NARs and Ag2S lead to the improved PEC performance. In addition, the PEC property of the co-sensitized TiO2 NRAs under visible light irradiation was also investigated and showed a dramatically enhanced photocurrent response.  相似文献   

2.
Titanium dioxide nanotube arrays (TiO2 NTAs) with rutile phase have been fabricated successfully via a two-step hydrothermal method. TiO2 nanorod arrays (TiO2 NRAs) are first hydrothermally grown on FTO substrate. Then the TiO2 NTAs can be obtained by controlling the HCl concentration of the hydrothermal etching process. The TiO2 NTAs have been characterized by X-ray diffractometer, scanning electron microscope, transmission electron microscopy, X-ray photoelectron spectroscopy, and ultraviolet–visible spectroscope. Evolution of TiO2 nanoarrays are accompanied by enhanced of the surface area and optical properties. Compared with TiO2 NRAs, the prepared TiO2 NTAs is more efficient in the photodegradation of methyl orange. These results reveal that the hydrothermal chemical etching provide a flexible and straightforward route for design and preparation of TiO2 NTAs, promising for new opportunities in photocatalysts and other fields.  相似文献   

3.
The photocatalytic performance of heterostructure photocatalysts is limited in practical use due to the charge accumulation at the interface and its low efficiency in utilizing solar energy during photocatalytic process. In this work, a ternary hierarchical TiO2 nanorod arrays/graphene/ZnO nanocomposite is prepared by using graphene sheets as bridge between TiO2 nanorod arrays (NRAs) and ZnO nanoparticles (NPs) via a facile combination of spin-coating and chemical vapor deposition techniques. The experimental study reveals that the graphene sheets provide a barrier-free access to transport photo-excited electrons from rutile TiO2 NRAs and ZnO NPs. In addition, there generates an interface scattering effect of visible light as the graphene sheets provide appreciable nucleation sites for ZnO NPs. This synergistic effect in the ternary nanocomposite gives rise to a largely enhanced photocurrent density and visible light-driven photocatalytic activity, which is 2.6 times higher than that of regular TiO2 NRAs/ZnO NPs heterostructure. It is expected that this hierarchical nanocomposite will be a promising candidate for applications in environmental remediation and energy fields.  相似文献   

4.
In this work, self-assembled monolayers (SAMs) of octadecyltrichlorosilane (OTS) were applied to induce the nucleation and growth of the antimony sulfide (Sb2S3) films on the functional ITO glass substrate at low temperature. The structure, morphology, and optical properties of the Sb2S3 films were investigated by X-ray diffraction, scanning electron microscopy, X-ray energy dispersive spectroscopy, and UV–vis spectroscopy. After thermal treatment at 200 °C for 1 h in air, the orthorhombic Sb2S3 was formed as a predominant phase in the deposited thin films. When the deposited films were thermally treated at 400 °C for 1 h in air, the orthorhombic Sb2S3 was decomposed and a cubic Sb2O3 was formed. The optical band energies of the as-deposited and thermally treated Sb2S3 films at 200 °C for 1 h in air and nitrogen were found to be 2.05 eV, 1.77, and 1.76 eV, respectively. As chemical templates, the OTS-functionalized SAMs played an important role in controlling the nucleation and growth of Sb2S3 films at low temperature. The results obtained from different preparation parameters applied in the present work will allow controlling the growth of the Sb2S3 films with uniform surface.  相似文献   

5.
Fast recombination of photogenerated charge carriers is a major problem in the photoelectrochemical and photocatalytic processes. In this work, we report significantly improved PEC performance of a nanocomposite consists of In2S3 nanoparticles dispersed on g-C3N4 nanosheets synthesized by a simple and facile wet chemical route. The results of high-resolution TEM study show that the obtained In2S3 nanoparticles of size 10–20 nm exist in cubic phase and are uniformly dispersed on the surface of g-C3N4 nanosheets. The In2S3/g-C3N4 nanocomposite with 25 weight percentage of In2S3 exhibits 8.5 times higher photocurrent density than the single-phase g-C3N4 under visible light illumination. The enhanced photocurrent density exhibited by the In2S3/g-C3N4 nanocomposite is attributed to the efficient separation of photogenerated charge carriers. The charge transfer mechanism in In2S3/g-C3N4 heterojunction was studied by a series of experiments, such as electrochemical impedance spectroscopy, photoelectrochemical measurement and photoluminescence emission spectroscopy. The intimate interface promotes the charge transfer and inhibits the recombination rate of photogenerated electron–hole pairs, which significantly improves the photoelectrochemical performance. A detailed charge transfer mechanism is discussed based on the Mott–Schottky plot study. This heterojunction material is found to be an efficient photocatalyst for the degradation of both cationic rhodamine B dye and anionic methyl orange dye as the lifetime of photogenerated charge carriers is higher in the composite than in single-phase In2S3 and g-C3N4. A strong correlation between the photoelectrochemical and the photocatalytic performances is observed in this composite.  相似文献   

6.
We report a facile electrochemical reduction method to synthesize Ti3+-self-doped TiO2 nanotube arrays (TNTs), where the effects of reduction duration and potential on the photoelectrochemical performance were systematically investigated. The X-ray photoelectron spectroscopy and electron paramagnetic resonance spectra confirmed the presence of Ti3+ in the TNTs. Under the optimum reduction condition, the Ti3+-self-doped TNTs exhibited remarkably enhanced photocurrent density and photoconversion efficiency, which were nearly 3.1 and 1.75 times that of pristine TNTs, respectively. The enhancement of PEC performance is due to the improved electrical conductivity, accelerated charge transfer rate at the TNTs/electrolyte interface, as well as the improved visible light response, which is elucidated by electrochemical impedance spectra, Mott–Schottky, and UV–Vis diffuse reflection spectra.  相似文献   

7.
A highly active and stable oxygen evolution reaction (OER) electrocatalyst is critical for hydrogen production from water splitting. Herein, three-dimensional Ni3S2@graphene@Co92S8 (Ni3S2@G@Co9S8), a sandwich-structured OER electrocatalyst, was grown in situ on nickel foam; it afforded an enhanced catalytic performance when highly conductive graphene is introduced as an intermediary for enhancing the electron transfer rate and stability. Serving as a free-standing electrocatalytic electrode, Ni3S2@G@Co9S8 presents excellent electrocatalytic activities for OER: A low onset overpotential (2 mA·cm?2 at 174 mV), large anode current density (10 mA·cm?2 at an overpotential of 210 mV), low Tafel slope (66 mV·dec?1), and predominant durability of over 96 h (releasing a current density of ~14 mA·cm?2 with a low and constant overpotential of 215 mV) in a 1 M KOH solution. This work provides a promising, cost-efficient electrocatalyst and sheds new light on improving the electrochemical performance of composites through enhancing the electron transfer rate and stability by introducing graphene as an intermediary.
  相似文献   

8.
We have studied the effect of the hydrothermal synthesis temperature on Al2O3 structure formation and examined the role of the phase composition of the precursor gel and surfactant in the formation of the pore structure of Al2O3. A technique has been proposed for the synthesis of TiO2/Al2O3 binary xerogels, and the effect of TiO2 content on the pore structure parameters and adsorption properties of TiO2/Al2O3 has been investigated.  相似文献   

9.
Nanosized metal (Pt or Pd)-decorated TiO2 nanofibers (NFs) were synthesized by a wet impregnation method. CdSe quantum dots (QDs) were then anchored onto the metal-decorated TiO2 NFs. The photocatalytic performance of these catalysts was tested for activation and reduction of CO2 under UV-B light. Gas chromatographic analysis indicated the formation of methanol, formic acid, and methyl formate as the primary products. In the absence of CdSe QDs, Pd-decorated TiO2 NFs were found to exhibit enhanced performance compared to Pt-decorated TiO2 NFs for methanol production. However, in the presence of CdSe, Pt-decorated TiO2 NFs exhibited higher selectivity for methanol, typically producing ~90 ppmg?1·h?1 methanol. The CO2 photoreduction mechanism is proposed to take place via a hydrogenation pathway from first principles calculations, which complement the experimental observations.
  相似文献   

10.
It is of great significance to explore new preparation methods and control the morphology and proportion of metal ions for the photoelectrochemical (PEC) water splitting of ternary sulfide photoelectrode. In this paper, the network-like CuInS2 film photocathodes were firstly prepared by hydrothermal growth method. The effects of different [Cu2+]/[In3+] molar ratios and concentrations of growth solution on CuInS2 films were investigated in detail. The mechanism of the synthetic reaction was studied. The best PEC photocurrent density of the CuInS2 film photoelectrode is ??0.81 mA/cm2 at ??0.6 V versus RHE when the [Cu2+]/[In3+] molar ratio is 0.4, the growth solution concentration is 8 mmol/L CuCl2·2H2O, 20 mmol/L InCl3·4H2O and 60 mmol/L C2H5NS. For the purpose of further improving photoelectrochemical properties of CuInS2 thin films, the Pt co-catalyst was loaded. The synthesized CuInS2–Pt thin film yielded a photocurrent density for ??1.92 mA/cm2 at ??0.6 V versus RHE due to the fast photogenerated electrons capture ability of Pt co-catalyst. The method of constructing photoelectrode film and the co-catalyst mechanism contributes to a sensational way for PEC water splitting of sulfide.  相似文献   

11.
The WO3/TiO2 nanocomposites were successfully prepared via a facile oxalic acid assisted hydrothermal process. The oxalic acid played a vital role on the preparation of WO3/TiO2 nanocomposites. Notably, it has been observed that the nanocomposites exhibited the wider absorption edge, and the higher photocatalytic activity, compared with pure TiO2. In addition, the photocatalytic mechanism was proposed, and it elaborated that WO3/TiO2 nanocomposite promoted the separation of the photoproduction carriers, and improved photocatalytic activity. The WO3/TiO2 nanocomposite may have a potential application as a UV–visible photocatalyst.  相似文献   

12.
BiVO4/TiO2 nanocomposites were fabricated by a facile wet-chemical process, followed by the synthesis of TiO2 hierarchical spheres via hydrothermal method. The BiVO4/TiO2 nanocomposites were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, UV–Vis diffuse reflectance spectroscopy and X-ray photoelectron spectroscopy. The results showed that prepared TiO2 presented hierarchical spherical morphology self-assembled by nanoparticles and an anatase–brookite mixed crystal phase. The introduction of monoclinic BiVO4 components retained the hierarchical structures and expanded the light response to around 510 nm. Type II BiVO4/TiO2 heterostructured nanocomposites exhibited improved photocatalytic degradation towards methylene blue under visible-light irradiation, especially for the composite photocatalysts with atomic Ti/Bi?=?10, which showed double degradation rate than that of pure BiVO4. The enhanced photocatalytic mechanism of the heterostructured BiVO4/TiO2 nanocomposites was discussed as well.  相似文献   

13.
K2Ti6O13/TiO2 bio-ceramic coatings are prepared successfully by micro-arc oxidation on titanium substrate in pure KOH electrolyte solution. The coating is prepared at various applied current density (150–500 mA/cm2) and in KOH electrolyte with different concentrations (0.5–1.2 mol/L). The composition and surface morphologies of coatings are strongly dependent on the applied current density and the electrolyte concentration. On the condition of lower current density and electrolyte concentration, K2Ti6O13 phase almost cannot be formed. The phase is mainly composed of rutile and K2Ti6O13 with increasing current density and electrolyte concentration. The surface morphologies are composed of whiskers and porous structures. The ability of K2Ti6O13/TiO2 bio-ceramic films inducing apatite deposition is evaluated by soaking it in biological model fluids. The results show the K2Ti6O13/TiO2 bio-ceramic coatings possess excellent capability of inducing bone-like apatite to deposit.  相似文献   

14.
This paper demonstrates the preparation of pure TiO2, 40% of Bi2O3 in TiO2 and Ag loaded Bi2O3/TiO2 nanocomposites by the hydrothermal method followed by the photoreduction process. The crystal structure, morphology and composition of the samples were characterized by X-ray diffraction, scanning electron microscopy and energy dispersive spectroscopy respectively. The dispersion of Ag nanoparticles on the surface of Bi2O3/TiO2 nanocomposites are found to bring the conduction band near to the valence band, resulting in the narrow band gap compared to pure TiO2 and Bi2O3/TiO2 nanocomposites. The XRD analysis demonstrated that silver nanoparticles were dispersed finely on the surface of Bi2O3/TiO2 nanocomposites. All the characterization results revealed that the Ag/Bi2O3/TiO2 nanocomposites were smaller crystallite size, stronger absorbance in the visible region and greater surface area than pure TiO2 and Bi2O3/TiO2 nanocomposites. The photoluminescence intensity decreases with an increase in the UV-illumination time of Ag loaded Bi2O3/TiO2 revealing a decrease in the recombination rate of electron–hole pairs. In order to test them as a photocatalyst, methyl orange was used as a standard. The photocatalytic degradation of methyl orange shows that the ABT5 sample exhibits the maximum degradation efficiency of 99% within 180 min of irradiation.  相似文献   

15.
To meet the demand of electromagnetic absorption, cheap and easily available microwave absorbents are urgently required. As an important functional material, carbon fibers (CFs) have been widely reported, however, too high conductivity easily leads to the impedance mismatch, which is not favorable to the microwave absorbing performance (MAP). To address this challenge, in this study, novel TiO2/Fe3O4/CF composites with tunable magnetic were synthesized by hydrothermal method and characterized by SEM, XRD, XPS and VSM. As absorbents, the minimum reflection loss (RL) value is ??41.52 dB at a thickness of 2.1 mm, and the corresponding bandwidth with effective attenuation (RL?<???10 dB) is up to 5.65 GHz (4.54–10.19 GHz). More importantly, the plausible mechanisms for the enhanced MAP are explored.  相似文献   

16.
Transparent antireflective SiO2/TiO2 double layer thin films were prepared using a sol–gel method and deposited on glass substrate by spin coating technique. Thin films were characterized using XRD, FE-SEM, AFM, UV–Vis spectroscopy and water contact angle measurements. XRD analysis reveals that the existence of pure anatase phase TiO2 crystallites in the thin films. FE-SEM analysis confirms the homogeneous dispersion of TiO2 on SiO2 layer. Water contact angle on the thin films was measured by a contact angle analyzer under UV light irradiation. The photocatalytic performance of the TiO2 and SiO2/TiO2 thin films was studied by the degradation of methylene blue under UV irradiation. The effect of an intermediate SiO2 layer on the photocatalytic performance of TiO2 thin films was examined. SiO2/TiO2 double layer thin films showed enhanced photocatalytic activity towards methylene blue dye.  相似文献   

17.
The Ho2S3-Ga2S3 system has been studied using differential thermal analysis, X-ray diffraction, microstructural analysis, microhardness tests, and density measurements, and its phase diagram has been constructed. The system contains three ternary compounds: Ho3GaS6, HoGaS3, and Ho6Ga10/3S14. Their melting behavior has been studied for the first time. The compound Ho6Ga10/3S14 melts congruently at 1435 K; Ho3GaS6 and HoGaS3 melt incongruently at 1370 and 1250 K, respectively. The Ho2S3-Ga2S3 system is a pseudobinary join of the ternary system Ho-Ga-S. At room temperature, the β-Ga2S3-based solid solution extends to 1.5 mol % Ho2S3; the Ho2S3 solubility in γ-Ga2S3 is 10 mol %. The compounds HoGaS3 and Ho3GaS6 crystallize in orthorhombic symmetry (Ho3GaS6: a = 10.40 Å, b = 13.20 Å, c = 6.44 Å, Z = 4; HoGaS3: a = 6.8 Å, b = 9.92 Å, a = 3.08 Å, Z = 4). Ho6Ga10/3S14 has a hexagonal structure (a = 9.62 Å, c = 6.04 Å).  相似文献   

18.
The sub-micron size anatase TiO2 particles with size about 0.2-0.3 μm were synthesized with basic peptizing agent and hydrothermal method and added into TiO2 film as light scattering center. The addition of the sub-micron size anatase TiO2 particles enhanced light scattering and dye adsorption abilities of the TiO2 film. When the weight proportion of the sub-micron size/nano-size TiO2 particles in the TiO2 film attained to 1.25/10, the highest energy conversion efficiency about 7.41% was obtained, which was 23% enhancement comparing with the TiO2 film containing pure nano-size TiO2 particles. It presented an efficient way for improving the photovoltaic performance of dye-sensitized solar cell.  相似文献   

19.
In this article, we study the possible relation between the electronic and magnetic structures of the TiO2/LaAlO3 interface and the unexpected magnetism found in undoped TiO2 films grown on LaAlO3. We concentrate on the role played by structural relaxation and interfacial oxygen vacancies. LaAlO3 has a layered structure along the (001) direction with alternating LaO and AlO2 planes, with nominal charges of +1 and −1, respectively. As a consequence of that, an oxygen-deficient TiO2 film with anatase structure will grow preferently on the AlO2 surface layer. We have therefore performed ab initio calculations for superlattices with TiO2/AlO2 interfaces with interfacial oxygen vacancies. Our main results are that vacancies lead to a change in the valence state of neighbor Ti atoms but not necessarily to a magnetic solution and that the appearance of magnetism depends also on structural details, such as second neighbor positions. These results are obtained using both the local spin density approximation (LSDA) and LSDA + U approximations.  相似文献   

20.
In pursuing excellent supercapacitor electrodes, we designed a series of MoS2/CoS2 composites consisting of flower-liked MoS2 and octahedron-shaped CoS2 through a facile one-step hydrothermal method and investigated the electrochemical performance of the samples with various hydrothermal time. Due to the coupling of two metal species and a big amount of well-developed CoS2 and MoS2, the results indicated that the MoS2/CoS2 composites electrodes exhibited the best electrochemical performance with a large specific capacitance of 490 F/g at 2 mV/s or 400 F/g at 10 A/g among all samples as the hydrothermal time reached 48 h (MCS48). Furthermore, the retention of MCS48 is 93.1% after 10000 cycles at 10 A/g, which manifests the excellent cycling stability. The outstanding electrochemical performance of MCS48 indicates that it could be a very promising and novel energy storage material for supercapacitors in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号