首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pure and cerium (Ce) doped tin oxide (SnO2) thin films are prepared on glass substrates by jet nebulizer spray pyrolysis technique at 450 °C. The synthesized films are characterized by X-ray diffraction (XRD), scanning electron microscopy, energy dispersive analysis X-ray, ultra violet visible spectrometer (UV–Vis) and stylus profilometer. Crystalline structure, crystallite size, lattice parameters, texture coefficient and stacking fault of the SnO2 thin films have been determined using X-ray diffractometer. The XRD results indicate that the films are grown with (110) plane preferred orientation. The surface morphology, elemental analysis and film thickness of the SnO2 films are analyzed and discussed. Optical band gap energy are calculated with transmittance data obtained from UV–Visible spectra. Optical characterization reveals that the band gap energy is found decreased from 3.49 to 2.68 eV. Pure and Ce doped SnO2 thin film gas sensors are fabricated and their gas sensing properties are tested for various gases maintained at different temperature between 150 and 250 °C. The 10 wt% Ce doped SnO2 sensor shows good selectivity towards ethanol (at operating temperature 250 °C). The influence of Ce concentration and operating temperature on the sensor performance is discussed. The better sensing ability for ethanol is observed compared with methanol, acetone, ammonia, and 2-methoxy ethanol gases.  相似文献   

2.
Methylene blue (MB) is a representative of a class of dyestuffs resistant to biodegradation. This paper presents a novel photocatalytic degradation of MB by La0.2Sr0.7Fe12O19 compound, which is a traditional permanent magnet and displays a large magnetic hysteresis (M–H) loop. The remnant magnetic moment and coercive field are determined to be 52 emu/g and 5876 Oe, respectively. UV–Visible optical spectroscopy reveals that La0.2Sr0.7Fe12O19 is simultaneously a semiconductor, whose direct and indirect band gap energies are determined to be 1.47 and 0.88 eV, respectively. The near infrared band gap makes it a good candidate to harvest sunlight for photocatalytic reaction or solar cell devices. This magnetic compound demonstrates excellent photocatalytic activity on degradation of MB under visible illumination. The colour of MB dispersion solution changes from deep blue to pale white and the absorbance decreases rapidly from 1.8 down to zero when the illumination duration extends to 6 h. Five absorption bands did not make any blue shifts along with the reaction time, suggesting a one-stepwise degradation process of MB, which makes La0.2Sr0.7Fe12O19 a unique magnetic catalyst and differs from TiO2 and other conventional catalysts.  相似文献   

3.
This paper deals with the effects of introducing multiwall carbon nanotubes (MWCNTs) into photoanodes of dye sensitized solar cells (DSSCs). Mesoporous titanium dioxide (TiO2) nanoparticles were synthesized using sol–gel technique. TiO2/MWCNT composites were prepared by adding functionalized MWCNTs to TiO2 nanoparticles using two different surfactants (α-terpineol and Triton X-100). Nanoparticles and composites were characterized using Dynamic Light Scattering spectrophotometer, Raman spectrometer, X-ray diffractometer, field emission scanning electron microscope, Brunauer–Emmett–Teller surface area analyzer and UV–Vis spectrophotometer. FESEM depicted that particles were spherical in shape and their size decreased due to addition of MWCNTs. This was attributed to the decrease in the crystallite size which in turn confirmed by XRD. UV–Vis absorption spectra showed the better absorbance for the visible range of light, as the content of MWCNT is increased. From the Tauc plot optical band gap was calculated and noted that it declined gradually with the content of MWCNTs. BET surface area increased drastically which was attributed to the formation of more number of pores in the nanocomposites as visualized from FESEM. UV–Vis spectra of dye desorbed from the photoanode revealed that the dye adsorption increased as a function of MWCNT wt%. I–V studies were carried out under the illumination of 100 mW/cm2 simulated sunlight. Photoanodes prepared by both the methods showed better performance compared to pristine TiO2 photoanode, because of high conducting path and high surface area provided by MWCNTs. Photoanodes with 0.19 wt% MWCNTs in them were able to achieve maximum efficiency of 3.54 and 3.86% for method A and B respectively.  相似文献   

4.
Nanometric V-doped particles with vanadium concentration varying from 0 to 10% were prepared using the polyol method. The influence of the doping on the textural, structural and optical properties was studied by various methods of characterization. X-ray diffraction (XRD) patterns disclose that nanocrystallites of cassiterite, i.e. rutile-like tetragonal structure SnO2 and the absence of a new vanadium phase in the XRD pattern in the different concentration of doping were formed after annealing, the ordinary crystallite size decreased from 20.6 to 12.3 when the doping concentration increased from 0 to 10%, respectively. Moreover, the N2 sorption porosimetry and transmission electron microscopic show that all samples synthesized were constituted of an aggregated network of almost spherical nanoparticles, which sizes changed with the altitude in the doping concentration to 10%. In accordance with UV–visible absorption measurements, this diminution of nanoparticles sizes was followed by a decrease in the band gap value from 3.25 eV, for undoped SnO2, to 2.75 eV, for SnO2 doped at 10%. On the other part, the photocatalytic activity of undoped and V-doped SnO2 nanoparticles was studied using methylene blue (MB) as model organic pollutants. The SnO2 nanoparticles doped at 10% of vanadium disclosed that the discoloration of MB reached 97.4% after irradiation of 120 min, with an apparent constant rate of the degradation reaching 0.035 min?1 for MB degradation that was about 2.5 times more than that of pure SnO2 (0.014 min?1).  相似文献   

5.
In this work, Fe-doped (1?wt%) TiO2 loaded on the activated carbon nano-composite was prepared using a sol-gel method. A prepared nano-composite was characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), BET surface area, Fourier transform infrared spectroscopy (FTIR), photoluminescence (PL) spectroscopy and UV–Vis diffuse reflectance spectroscopy (DRS). The photocatalytic activity of the nano-composite was evaluated through degradation of synthetic textile wastewater, reactive red 198, under visible light irradiations. The XRD result indicated that the TiO2 nano-composite contained only anatase phase. The surface area of the TiO2 increased from 48?m2/g to 100?m2/g through the fabrication of the nano-composite. The FE-SEM results indicate that the TiO2 particles with an average particle size of 35–70?nm can be deposited homogeneously on the activated carbon surface. DRS showed that the Fe doping in the TiO2 -activated carbon nano-composite induced a significant red shift of the absorption edge and then the band gap energy decreased from 3.3 to 2.9?eV. Photocatalytic results indicated that the photocatalytic activity of the Fe doped TiO2 increased under visible light irradiation in the presence of the activated carbon.  相似文献   

6.
In this paper, Cu2SnS3 (CTS) thin film is fabricated through sulfurization of oxide precursor which is deposited by pulsed laser deposition with a mixed CuO/SnO2 target. XRD and Raman analyses indicate a pure monoclinic Cu2SnS3 phase has been obtained by sulfurization at temperature from 500 to 600 °C. A compact and smooth film with polycrystalline structure is observed through SEM result. In addition, the CTS films show excellent absorbance with the band gap around 0.91 eV estimated by UV–Vis, which is suitable for the absorption layer of solar cells. Final devices were fabricated with a SLG/Mo/CTS/CdS/i-ZnO/AZO/Al structure. Device performance is improved with the temperature increasing. The best efficiency of CTS-based solar cells is 0.69% with an open-circuit voltage of 144 mV and a short-circuit current density of 18.30 mA/cm?2.  相似文献   

7.
High sensitive resistive type humidity sensor based titanium oxide/polyaniline (TiO2/PANI) nanocomposite thin films prepared by a sol–gel spin coating technique on an alumina substrate. The resultant nanocomposites were characterized by using X-ray diffraction (XRD), Field emission electron microscopy, Fourier transform infrared spectroscopy (FTIR), UV–Vis absorbance and energy dispersive spectra analysis. In the XRD patterns of both pure and TiO2/PANI composite confirms the deposition of PANI on TiO2 and the average size of the composite particle was found to be 32 nm. Large number of nano grain surface being covered by PANI, which agrees very well with the results obtained by XRD studies. FTIR and UV–Vis spectra reveal that the PANI component undergoes an electronic structure modification as a result of the TiO2 and PANI interaction. The room temperature resistivity was found to be for TiO2 and TiO2/PANI nanocomposite films 1.42?×?106 and 2.56?×?103 Ω cm respectively. The obtained TiO2/PANI nanocomposites sensor exhibited higher humidity sensing performance such as high sensitivity, fast response (20 s) and recovery time (15 s) and high stability.  相似文献   

8.
Pure and Copper/Nitrogen (Cu/N)-codoped TiO2 photoanodes with various Cu concentrations are prepared via sol–gel route for the photoanode application in dye-sensitized solar cells (DSSCs). All the prepared samples are characterized by X-Ray Diffraction (XRD), X-Ray Photoelectron Spectroscopy (XPS), Scanning Electron Microscope (SEM), Transmission Electron Microscopy (TEM), UV–Vis spectroscopy (UV–VIS) and Electrochemical Impedance Spectroscopy (EIS). Addition of suitable amount of Cu and N content in TiO2 can alter its optical and electrical properties by extending absorption in the visible region and band gap reduction. The results show that some of the Ti sites are replaced by Cu atoms while O sites are occupied by N atoms. Upon adequate addition of Cu/N could lead to smaller particle size, higher specific surface area, increased dye adsorption and retarded charge carrier recombination. A significant improvement in the power conversion efficiency is observed in case of optimized 0.3 mol% Cu/N-doped TiO2 nanoparticles (NPs) based DSSC. This optimized 0.3 mol% Cu/N-doped photoanode accomplished a best power conversion efficiency of 11.70% with a short circuit current density of 23.41 mA cm?2 which is 41% higher than that of the pure TiO2 photoanode based DSSC (6.82%).  相似文献   

9.
Nanocrystalline thin films of TiO2 have been synthesized by sol gel spin coating technique Thin films of TiO2 annealed at 700 °C were characterized by X-ray diffraction(XRD), Atomic Force Microscopy, High resolution TEM and Scanning Electron Microscopy (SEM), The XRD shows formation of tetragonal anatase and rutile phases with lattice parameters a = 3.7837 Å and c = 9.5087 Å. The surface morphology of the TiO2 films showed that the nanoparticles are fine with an average grain size of about 60 nm. Optical studies revealed a high absorption coefficient (104 cm?1) with a direct band gap of 3.24 eV. The films are of the n type conduction with room temperature electrical conductivity of 10?6 (Ω cm)?1.  相似文献   

10.
Transparent antireflective SiO2/TiO2 double layer thin films were prepared using a sol–gel method and deposited on glass substrate by spin coating technique. Thin films were characterized using XRD, FE-SEM, AFM, UV–Vis spectroscopy and water contact angle measurements. XRD analysis reveals that the existence of pure anatase phase TiO2 crystallites in the thin films. FE-SEM analysis confirms the homogeneous dispersion of TiO2 on SiO2 layer. Water contact angle on the thin films was measured by a contact angle analyzer under UV light irradiation. The photocatalytic performance of the TiO2 and SiO2/TiO2 thin films was studied by the degradation of methylene blue under UV irradiation. The effect of an intermediate SiO2 layer on the photocatalytic performance of TiO2 thin films was examined. SiO2/TiO2 double layer thin films showed enhanced photocatalytic activity towards methylene blue dye.  相似文献   

11.
Highly active gC3N4-BiFeO3-Cu2O nanocomposites were successfully prepared via a facile, cost effective and eco-friendly method of hydrothermally wet precipitation combined with ultrasonic dispersion process. The prepared samples were characterized by XRD, FTIR, HRSEM, EDS, TEM, UV–Vis DRS, PL, VSM, BET and electrochemical properties. By means of these analysis for examine the crystal phase, nanostructure, band gap and light-harvesting properties were carried out. UV-DRS spectra indicate that the bandgap of g-C3N4 (2.7 eV) reduced to 2.59 and 2.21 eV by mixed with corresponds to BiFeO3 and BiFeO3/Cu2O nanomaterials. The ideal photocatalytic activity of the gC3N4-BiFeO3-Cu2O nanocomposites, where RhB dye under visible light irradiation which was up to 4.36 and 2.52 times as the higher photodegradation ability to compare pristine g-C3N4 and gC3N4-BiFeOcatalyst. The magnetization was confirmed by VSM studies, and hence, after the photocatalytic reaction, the magnetically separable catalyst can be quickly separated from the water by an external magnetic field. The superior photocatalytic performance is due to the synergistic effect on the interface of BiFeO3/Cu2O in the gC3N4-BiFeO3-Cu2O nanocomposites has reduced the bandgap which enables high separation efficiency of the charge carrier, suppressed recombination rate and their high surface area. Moreover, the chief gC3N4-BiFeO3-Cu2O catalyst can exhibited the lesser charge transfer resistance (impedance), enhances of photocurrent responses, whereas exposed to the development of photocatalytic appearance and more charge carrier ability. Also, the antibacterial activity of the gC3N4-BiFeO3-Cu2O nanocomposite has showing a well deactivation in both G+ (S. aureus) and G? (E. coli) bacteria’s whereas compare to other prepared samples.  相似文献   

12.
Nanocrystalline TiO2 was synthesized by the sol-gel process by controlling the crystallite size through calcination. The resulting nanocrystals were characterized using XRD, FT-Raman, SEM/EDX, DSC/TGA and UV–Vis spectroscopic techniques. XRD patterns confirmed the presence of only pure 100% anatase phase TiO2. The surface morphology of the nanotitania was evaluated with Scanning Electron Microscopy. The purity of the sol-gel-derived TiO2 was confirmed through EDX measurements. The band gap of the nanotitania was found to be 3.6 eV from UV–Vis measurements. The pHzpc of the titania sample was measured as 5.90.  相似文献   

13.
A series of Zn1–x Fe x O (x = 0, 1, 2, 3, 4 %) powders via a two-step sol–gel method in open system were successfully fabricated. Influence of Fe doping concentration on the structure, morphology, optical properties and photo catalysis properties were investigated by means of X-ray diffraction, scanning electron microscopy, UV–Vis spectrophotometer and photochemical reaction instrument. The results showed that the ZnO powders were hexagonal wurtzite structures and their crystalline sizes and particle diameters decreased with the increase of Fe doping concentration. An increase of visible light absorption value and a decrease in band gap from 3.219 to 3.167 eV were found with the increase of Fe doping concentration, which enable the sample harvest more photons to excite the electron from the valence. Enhanced visible light induced photocatalytic activity has been found in Fe doped ZnO and the ultraviolet light induced photocatalytic properties of the Fe-doped ZnO have been improved greatly compared with undoped ZnO and commercially available TiO2 (P25). The photocatalytic activities were not significantly affected by the particle size, and the best Fe doping concentration is 1 %.  相似文献   

14.
Sn4+ and La3+ co-doped TiO2 photocatalytic material with nanoparticle structure have been successfully prepared using SnCl2·2H2O and La(NO3)3·6H2O as precursors. Scanning electron microscopy, X-ray diffraction, transmission electron microscopy and UV–visible spectroscopy have been used to for the characterization of the morphology, crystal structure, particle size and optical properties of the samples. The photocatalytic properties of sample with various amount of La doped TiO2 have been studied by photo degradation of methyl orange (MO) in water under visible light. XRD patterns showed both rutile and anatase phases for 5 mol% of Sn and 5–10 mol% of La. But anatase phase with a little rutile phase was formed for 5 mol%Sn and 10 mol%La. The prepared Sn and La co doped TiO2 photo-catalyst showed optical absorption edge in the visible light area and exhibited excellent photo-catalytic ability for degradation of MO solution under visible irradiation. Antibacterial behavior towards E. coli was then studied under visible irradiation. The synthesized T-5%Sn-10%La powder exhibited superior antibacterial activity under visible irradiation compared to the pure TiO2.  相似文献   

15.
CdS thin films simultaneously doped with Mg and Cl at different doping concentrations (0, 2, 4, 6 and 8 at%) were prepared on glass substrates by spray pyrolysis technique using perfume atomizer at 400 °C. The effect of Mg and Cl doping concentration on the structural, morphological, optical and electrical properties of the deposited films were investigated using X-ray diffraction (XRD), scanning electron microscopy, UV–Vis spectroscopy and dc electrical measurements, respectively. XRD analysis showed that the undoped and doped CdS films exhibit hexagonal structure with a preferential orientation along the (0 0 2) plane. The 2θ angle position of the (0 0 2) peak of the doped films was shifted towards a higher angle with increasing Mg and Cl concentration. The UV–Vis–NIR absorption spectra of Mg and Cl doped thin films are measured and classical Tauc approach was employed to estimate their band gap energies. The increase in band gap energy from 2.46 to 2.73 eV with the reduction in crystallite size supports quantum size effect. Raman spectra implied that more defects existed in the doped samples. Electrical studies showed that all the films have resistivity in the order of 101 Ω-cm and the CdS film with 6 at% Mg and Cl concentration has a minimum resistivity of 1.332 × 101 Ω-cm.  相似文献   

16.
Titanium dioxide (TiO2) thin films were prepared by sol–gel spin coating method and deposited on ITO-coated glass substrates. The effects of different heat treatment annealing temperatures on the phase composition of TiO2 films and its effect on the optical band gap, morphological, structural as well as using these layers in P3HT:PCBM-based organic solar cell were examined. The results show the presence of rutile phases in the TiO2 films which were heat-treated for 2 h at different temperatures (200, 300, 400, 500 and 600 °C). The optical properties of the TiO2 films have altered by temperature with a slight decrease in the transmittance intensity in the visible region with increasing the temperature. The optical band gap values were found to be in the range of 3.28–3.59 eV for the forbidden direct electronic transition and 3.40–3.79 eV for the allowed direct transition. TiO2 layers were used as electron transport layer in inverted organic solar cells and resulted in a power conversion efficiency of 1.59% with short circuit current density of 6.64 mA cm?2 for TiO2 layer heat-treated at 600 °C.  相似文献   

17.
In the present paper we have synthesized pristine and Sr doped SnO2 in order to prepare a selective ethanol sensor with rapid response–recovery time and good repeatability. Pristine as well as Sr (2, 4 and 6 mol%) doped SnO2 nanostructured powder was synthesized by using a facile co-precipitation method. The samples were characterized by TG–DTA, XRD, HR-TEM, SAED, FEG-SEM, SEM–EDAX, XPS, UV–Vis and FTIR spectroscopy techniques. The gas response performance of sensor towards ethanol, acetone, liquid petroleum gas and ammonia has been carried out. The results demonstrate that Sr doping in SnO2 systematically decreases crystallite size, increases the porosity and hence enhances the gas response properties of pristine SnO2 viz. lower operating temperature, higher ethanol response and better selectivity towards ethanol. The response and recovery time for 4 mol% Sr doped SnO2 thick film sensor at the operating temperature of 300 °C were 2 and 7 s, respectively.  相似文献   

18.
Optimized doped TiO2 is necessary for efficient visible light harvesting and widening the applications spectrum of TiO2-based materials. Titanium dioxide doped with silver and/or vanadium has been synthesized by one-pot hydrothermal method without post-calcination. Codoping induced visible light absorption while maintaining the photoactive anatase phase along with good crystallinity. Synthesized products are in nanometer range and possess high specific surface area. Having nearly spherical morphology, the particles are distributed and the particle size estimated from TEM observation is in accordance with the XRD results. Spectroscopic investigations reveal that the doped atoms successfully entered the TiO2 lattice modifying the band structure. The narrowed band gap allows visible light photons for absorption, and the codoped samples displayed enhanced visible light absorption among the synthesized samples. Photodegradation performance evaluated under visible light irradiations showed that silver- , vanadium-codoped TiO2 have the best visible light photocatalytic activity attributed to stable configuration, high visible light absorption, coupling between silver and vanadium and their optimal doping concentration.  相似文献   

19.
In this paper, TiO2 nanoparticles were synthesized via sol–gel method by using of TiCl4 as a precursor in the ethanol solution. The structure and the morphology of TiO2 nanoparticles were characterized by X-ray diffraction and scanning electron microscopy. We have studied the optical properties by using of UV–Vis spectroscopy. The results show that the calcination temperature is an important factor in size of nanoparticles, the morphology of powders and the band gap energy of TiO2 nanoparticles. Also, rapid cooling time of samples is an important factor to decrease band gap energies, considerably. The calculated band gap of the TiO2 nanoparticles is in range of 2.39–3.50 eV.  相似文献   

20.
A dip-coating technique was employed to prepare anatase phase of titania thin films. Fluorine doped tin oxide substrates were used to prepare titania thin films. The samples were annealed at 550 °C for 18 h. X-ray diffraction results revealed the amorphous and anatase phases of TiO2 for as-synthesized and annealed samples, respectively. The crystallite size of anatase TiO2 thin films was almost 25 nm for annealed samples. UV–visible confirmed the energy band gap 3.86 and 3.64 eV for as-prepared and calcinated titania thin films. The reduction in the energy band gap could be due to the change in crystallization and agglomeration of small grains after calcination. The morphology of the prepared films was investigated by field emission scanning electron microscopy which demonstrated the agglomeration of spherical particles of TiO2 with average particle size of about 30 nm. The molecular properties (chemical bonding) of the samples were investigated by means of Fourier Transform Infrared (FTIR) spectroscopy. FTIR analysis exhibited the formation of titania, functional group OH, hydroxyl stretching vibrations of the C–OH groups, bending vibration mode of H–O–H, alkyl C–H stretch, stretching band of Ti–OH, CN asymmetric band stretching, and C=O saturated aldehyde.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号