首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel nanostructure of [CoFe2O4/PVP]//[YAG:7 % Tb3+/PVP] magnetic-luminescent bifunctional Janus nanofibers has been successfully fabricated via electrospinning technology using a homemade parallel spinneret. Electrospun YAG:7 % Tb3+ luminescent nanofibers and CoFe2O4 magnetic nanofibers were respectively incorporated into polyvinyl pyrrolidone (PVP) matrix and electrospun into Janus nanofibers with CoFe2O4 magnetic nanofibers/PVP as one strand nanofiber and YAG:7 % Tb3+ luminescent nanofibers/PVP as another strand nanofiber. [CoFe2O4/PVP]//[YAG:7 % Tb3+/PVP] magnetic-luminescent bifunctional Janus nanofibers possess superior magnetic and luminescent properties due to their peculiar nanostructure, and the luminescent characteristics and saturation magnetizations of the Janus nanofibers can be tuned by adding various amounts of YAG:7 % Tb3+ luminescent nanofibers and CoFe2O4 magnetic nanofibers. Compared with CoFe2O4/YAG:7 % Tb3+/PVP composite nanofibers, the magnetic-luminescent bifunctional Janus nanofibers provide higher performances due to isolating YAG:7 %Tb3+ luminescent nanofibers from CoFe2O4 magnetic nanofibers. Formation mechanism of [CoFe2O4/PVP]//[YAG:7 % Tb3+/PVP] Janus nanofibers is also presented. The design conception and construction technology are of universal significance to fabricate other bifunctional Janus nanofibers.  相似文献   

2.
Surface silvered polyimide (PI)/Fe2O3 composite films with both superparamagnetic and surface electrically conductive properties have been fabricated by an in situ technique. Iron (III) 2,4-pentanedionate was incorporated into a PI precursor poly(amic acid) solution and thermally decomposed to form iron oxide nanoparticles in the process of thermal imidization, preparing PI/Fe2O3 nanocomposite films. The establishment of a silver layer on the PI/Fe2O3 film surface involved the steps of chemical etching by the alkaline aqueous solution, ion exchange with silver ions and chemical reduction by glucose. The formed Fe2O3 particles of the nano scale endow the film with typical superparamagnetic response. By employing the etching time of only 10 min and a reduction time of no more than 15 min, the well-established silver layers have formed on the upside surface. The corresponding reflectivity and resistivity reached to the value of 76.15% and 0.7 Ω/square respectively.  相似文献   

3.
The effective electrical conductivity of p type porous silicon is determined both theoretically and experimentally for different porosities ranging from 30% to 80%. In this work, Effective Medium Approximation (EMA) model was used as a theoretical support. The porous silicon samples were prepared by the electrochemical etching method for different values of the anodic current. The porous material is assumed to be formed of three phases; vacuum, oxide and Si nanocrystallites. The analytical expression of the electrical conductivity of the Si nanocrystallites was established using the quantum confinement theory. This enables us to correlate the electrical conductivity of a PS layer, to the peak energy of its photoluminescence (PL) spectrum. A perfect agreement between the theoretical and the experimental electrical conductivity values was obtained for all prospected PS porosities. The results are discussed as regard to other works.  相似文献   

4.

In the present work, pure ZrO2@SnO2 and Samarium (Smx) (x?=?1%, 8% and 12%)-doped ZrO2@SnO2 nanoparticles (NPs) successfully synthesized by facile low-cost co-precipitation technique. As-synthesized nanostructures (NS) were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), UV–visible, X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FT-IR), Brunauer–Emmett–Teller (BET) spectroscopic investigation. The tetragonal crystal phase of the as-synthesized Smx:ZrO2@SnO2 NS confirmed by XRD analysis. The observed peak shift in the XRD patterns confirmed incorporation of dopant into host lattice. The Smx:ZrO2@SnO2 NS present irregular spherical morphology and high agglomeration confirmed by FESEM microscope analysis. The presence of functional groups, chemical bonding, chemical constituents and valence state of the NS confirmed by FT-IR and XPS analysis. The Smx:ZrO2@SnO2 NS showed higher surface area and smaller optical band gap (454 cm2/g and 2.12 eV) than the pure ZrO2@SnO2 NS (189–196 cm2/g and 2.84 eV). Photoluminescence (PL) spectra of undoped ZrO2@SnO2 and Smx:ZrO2@SnO2 NS exhibited oxygen vacancies. Undoped ZrO2@SnO2 NS exhibited emission intensity at 370.6 nm (λexcitation?=?300 nm) whereas, Smx:ZrO2@SnO2 NS showed emission intensities at 453.4 nm, 476.3 nm, 601.3 nm (λexcitation?=?300 nm). Electrical property studies of Smx:ZrO2:SnO2 (1%, 8% and 12%) NS showed large variation in Hall constant (0.125?×?106 cm2/coulomb to 0.647?×?106 cm2/coulomb) with proportionately large variation in the resistivity (147.8 Ω-cm to 456.8 Ω-cm) for all the doped samples as compared with pure ZrO2@SnO2 NS. The Sm3+-doped ZrO2@SnO2 NS showed higher stability, intense PL emission and enhanced electrical properties.

  相似文献   

5.
以氧化石墨烯(Graphene oxide,GO)水溶胶作溶剂和表面活性剂,将不同质量分数的多壁碳纳米管(Multi-walled carbon nanotubes,MWCNTs),通过超声空化作用分散于其中得到稳定均质的多壁纳米管/氧化石墨烯(MWCNT-GO)悬浮液。采用微滤自组装法制备MWCNT-GO杂化薄膜,然后将其置于真空干燥箱中进行低温(200℃)热处理1 h以脱除GO中的大部分含氧官能团,即得部分还原的多壁碳纳米管-还原石墨烯(MWCNT-RGO)杂化薄膜。结果表明:MWCNT-GO杂化薄膜呈现均质层状的"三明治"式结构,MWCNTs与GO形成3D交联导电网络,通过控制MWCNTs的添加量和低温热处理,可实现氧化石墨烯导电性的恢复和有效调控。随着MWCNTs含量的增加,所得MWCNT-GO杂化薄膜的导电率增加。掺杂质量分数50%的MWCNTs所制MWC-NT-GO-50杂化薄膜的导电率为1 120 S/m,经200℃热处理后,导电率高达5 380 S/m。  相似文献   

6.
Flexible electrode films play critical and fundamental roles in the successful development of flexible electronic devices. In this study, carbon nanotubes(CNTs) were implanted into silver(Ag) ink to enhance the electrical conductivity and the reliability of the printed Ag electrode films. The fabricated carbon nanotubes-enriched silver(Ag-CNTs) electrode films were printed on the polyimide substrates by a facile screen printing method and sintered at a relatively low temperature. The resistivity of Ag-CNTs films was decreased by 62.27% compared with the pure Ag film. Additionally, the Ag-CNTs films exhibited excellent flexibility under a bending radius of 4 mm(strain ε = 2.09%) over 1000 cycles. Furthermore, the Ag-CNTs film displayed unchangeable electrical conductivity together with a strong adhesion after an accelerated aging test with 500 thermal shock cycles. These improvements were attributed to the AgCNTs interconnected network structure, which can provide electronic transmission channels and prevent cracks from initiating and propagating.  相似文献   

7.
Metastable antimony(V) oxide compounds are prepared via mechanochemical reactions in mixtures of CaO and Sb2O3, followed by mild oxidizing heat treatment and calcium leaching in a hydrochloric acid solution, and are characterized by x-ray diffraction and thermal analysis. The synthesized compounds have the pyrochlore structure or a monoclinic pyrochlore-like structure (Ca16Sb 3+ 8 Sb 5+ 8 O48). Doping with fluorine slows down subsequent oxidation, while doping with lanthanum impedes calcium leaching. The composition and morphology of the powders (nanopores and core-shell microstructure of the grains) determine their properties: water release in a broad temperature range, proton conductivity, and low absorption capacity for Na+ ions. In hydrogen atmosphere, the reduction of antimony decreases their conductivity.  相似文献   

8.
9.
10.
A novel kind of hybrid nanoparticles, Fe3O4@poly(ε-caprolactone)-carbazole, i.e. Fe3O4@PCL-carbazole, was synthesized via surface-initiated ring-opening polymerization (ROP) from glycolic acid — functionalized Fe3O4, and N, N′-Dicyclohexylcarbodiimide (DCC) was used to combine carbazyl group to the hydroxyl group at the end of PCL. The organic polymers as the shell were obtained with a narrow molecular weight distribution. Superparamagnetism and fluorescence of the nanoparticles were investigated by vibrating sample magnetometry (VSM) and fluorescence spectra. The study of the release of model drug progesterone from the hybrid nanoparticles indicated that the drug was released slowly and steady-going. Combined with the advantage of superparamagnetism, biodegradability, biocompatibility and fluorescence, the hybrid nanoparticles could be used as novel potential carriers and applied extensively in targeted drug delivery and release.  相似文献   

11.
Single-crystal nitrogen doped CdS nanoribbons (NRs) with wurtzite structure were synthesized in ammonia atmosphere via a thermal evaporation deposition route. X-ray diffraction patterns reveal a significant contraction of the lattice constants due to the incorporation of nitrogen. Temperature-varied photoluminescence spectra of CdS:N NRs exhibit spectral features near the band edge, which can be ascribed to free excition and neutral acceptor-bound excition emissions. Electrical and photoelectrical properties of the CdS:N NRs were systemically studied by constructing the field-effect transistors based on individual NRs. The conductivity of the NRs can be tuned by two orders of magnitude by controlling the N doping concentration. Moreover, by post-annealing, the device performance is remarkably improved, in particular, the mobility of the CdS:N NRs is increased by nearly three orders of magnitude from approximately 10(-1) to hundreds of cm2/Vs. I(on)I(off) ratio of the annealed device reaches over 10(4). Photoconductive properties of the CdS:N NRs were also studied. The doped NRs show high sensitivity to the light with energy larger than band-gap and the response amplitude and speed depend on the doping concentration.  相似文献   

12.
13.
For the first time, a series of carbon nanofiber (CNF)/polydimethylsiloxane(PDMS)-based nanocomposites was prepared using in situ polymerization technique by critical manipulation of factors, such as method of preparation and chemical modification of filler. Quantification of the degree of dispersion was done by introducing a dispersion degree parameter. Extent of dispersion was found to improve by amine modification of CNFs. Electrical conductivity was found to undergo profound increase when compared with that of the insulating base polymer. Amine-modified CNF-based nanocomposites showed percolation threshold at lower filler loading compared with unmodified CNF-based nanocomposites. These results of electrical properties measurements were correlated with the results of TEM analysis.  相似文献   

14.
15.
16.
Water soluble CdS nanoparticles were synthesized by reacting CdCl2 with sodium thiosulphate solutions as sulphur precursor. The facile one-pot synthetic route produced tunable (2-10 nm) high quality QDs with narrow particle size distribution and enhanced quantum yields (QY).  相似文献   

17.
聚合物电解质在锂金属电池中的应用受限于锂枝晶生长、电化学不稳定性及较低的离子电导率.为解决这些问题,本文通过向三维多孔芳纶纳米纤维(ANF)中填充聚环氧乙烷(PEO)-双三氟甲基磺酰亚胺锂(LiTFSI)电解质,制备了基于三维芳纶纳米纤维网络骨架的柔性ANF/PEO-LiTFSI复合电解质薄膜.由于其独特的构造及离子在三维ANF/PEO-LiTFSI界面中的连续输运,该复合电解质膜具有比PEO-LiTFSI电解质膜更高的力学强度(10.0 MPa)、热稳定性、电化学稳定性(60℃下达4.6 V)和离子电导率,以及较强的抑制锂枝晶能力.基于该复合电解质的固态LiFePO4/Li电池表现出优异的循环性能(在0.4 C下充放电百次后的容量达130 mA h g-1、保持率为93%).该研究提供了一种基于三维骨架设计和制备高性能电解质的有效方法,有望应用于固态锂金属电池.  相似文献   

18.
This experimental investigation discussed on the stability and rheological behavior of multi-wall carbon nanotubes (MWCNTs) nanofluids with and without gum arabic (GA). The stability of MWCNT in the presence of GA dispersant in solar glycol is systematically investigated by taking into account the combined effect of different parameters, such as sonication time, temperature, dispersant and particle concentration. The concentrations of MWCNT and GA have been varied from 0.2 to 0.6% volume concentration and from 0.25 to 1.25 wt%, respectively, and the sonication time has been varied in between 30 and 120 min. The effect of sonication time on viscosity was discussed. It was perceived that the shear thinning behavior is exhibited by all the nanofluid samples. The stability of nanofluid is measured in terms of MWCNT concentration as a function of sediment time using UV-Vis spectrophotometer. Rheological behavior of MWCNT nanofluids is measured using Bohlin CVO Rheometer in the temperature range of 30–50°C, with step sizes of 5°C. Optimal GA concentration is obtained for the entire range of MWCNT concentration and 0.25–1.25 wt% of GA is found to be sufficient to steady all MWCNT range in solar glycol. Rapid sedimentation of MWCNTs is observed at higher GA concentration and sonication time. The presence of MWCNT and GA enhanced the thermal conductivity of the nanofluids by 30.59% at 0.6 vol.% particle concentration and 1.25 GA wt% at 50°C. The electrical conductivity is enhanced in a linear manner with respect to the loading of MWCNT and GA. Nevertheless, the electrical conductivity is increased linearly with increasing the temperature of the nanofluid. At particle concentration of 0.6 vol.% of MWCNT and 1.25 wt% of GA, the electrical conductivity of the nanofluid is improved by 190.57% at a temperature of 50°C.  相似文献   

19.
Honeycomb structures are increasingly being used in many important fields. A novel combined embedded enhanced honeycomb (CEEH) in developed in this paper based on the two existing embedded enhanced honeycombs, the single rib embedded enhanced honeycomb (SREEH) and the rhombic grid embedded enhanced honeycomb (RGEEH). Analytical model related to the in-plane Young’s modulus and Poisson’s ratio is built and validated by using two different finite element (FE) models (3D beam model and 3D solid model). The in-plane elastic behavior of the honeycomb is also investigated against the geometrical parameters by using the numerically validated analytical solutions. The results show that the new CEEH can achieve a wide range value of Poisson’s ratio and Young’s modulus by tailoring geometric parameters. The results also show that the new CEEH exhibits higher x- directional specific stiffness than SREEH while higher y- directional specific stiffness than RGEEH. Moreover, the new CEEH can weaken even eliminate the difference between the two principal directions which can be hardly achieved by the SREEH and RGEEH. Given these advantages, this new design may be promising in some applications. This work provides a new insight into the designs of embedded enhanced honeycombs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号