首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new metal orthoborate compound, cobalt dinickel orthoborate, CoNi2(BO3)2 has been successfully synthesized for the first time. The title compound was synthesized by thermally-induced solid-state chemical reaction at 900°C between the initial reagents of Co(NO3)2 · 6H2O, Ni(NO3)2 · 6H2O and H3BO3 which were mixed with the mol ratio of 1: 2: 2 respectively. The obtained product was structurally characterized by X-ray powder diffraction technique. It has been found that the CoNi2(BO3)2 crystallizes in the kotoite type and isostructural with the compounds having the chemical formula M3(BO3)2 where M—Mg, Co and Ni. The synthesized compound belongs to the orthorhombic crystal system with the refined unit cell parameters of a = 5.419(9) Å, b = 8.352(0) Å, c = 4.478(8) Å and Z = 2. The space group was determined as Pnmn. Further characterizations by FTIR, elemental analysis and thermal analysis were also performed.  相似文献   

2.
Crystalline Co3O4 nanowire arrays with different morphologies grown on Ni foam were investigated by varying the reaction temperature, the concentration of precursors, and reaction time. The Co3O4 nanowires synthesized under typical reaction condition had a diameter range of approximately 500–900 nm with a length of 17 µm. Electrochemical reduction of hydrogen peroxide (H2O2) of the optimized Co3O4 nanowire electrode was studied by cyclic voltammetry. A high current density of 101.8 mA cm?2 was obtained at ?0.4 V in a solution of 0.4 M H2O2 and 3.0 M NaOH at room temperature compared to 85.8 mA cm?2 at ?0.35 V of the Co3O4 nanoparticle electrode. Results clearly indicated that the Ni foam supported Co3O4 nanowire electrode exhibited superior catalytic activity and mass transport kinetics for H2O2 electrochemical reduction.  相似文献   

3.
Carbon-coating Na3V2(PO4)2F3 nanoparticles (NVPF@C NP) were prepared by a hydrothermal assisted sol–gel method and applied as cathode materials for Na-ion batteries. The as-prepared nanocomposites were composed of Na3V2(PO4)2F3 nanoparticles with a typical size of ~?100 nm and an amorphous carbon layer with the thickness of ~?5 nm. Cyclic voltammetry, rate and cycling, and electrochemical impedance spectroscopy tests were used to discuss the effect of carbon coating and nanostructure. Results display that the as-prepared NVPF@C NP demonstrates a higher rate capability and better long cycling performance compared with bare Na3V2(PO4)2F3 bulk (72 mA h g?1 at 10 C vs 39 mA h g?1 at 10 and 1 C capacity retention of 95% vs 88% after 50 cycles). The remarking electrode performance was attributed to the combination of nanostructure and carbon coating, which can provide short Na-ion diffusion distance and rapid electron migration.  相似文献   

4.
We report the results of magnetic, magnetocaloric properties, and critical behavior investigation of the double-layered perovskite manganite La1.4(Sr0.95Ca0.05)1.6Mn2O7. The compounds exhibits a paramagnetic (PM) to ferromagnetic (FM) transition at the Curie temperature T C = 248 K, a Neel transition at T N = 180 K, and a spin glass behavior below 150 K. To probe the magnetic interactions responsible for the magnetic transitions, we performed a critical exponent analysis in the vicinity of the FM–PM transition range. Magnetic entropy change (??S M) was estimated from isothermal magnetization data. The critical exponents β and γ, determined by analyzing the Arrott plots, are found to be T C = 248 K, β = 0.594, γ = 1.048, and δ = 2.764. These values for the critical exponents are close to the mean-field values. In order to estimate the spontaneous magnetization M S(T) at a given temperature, we use a process based on the analysis, in the mean-field theory, of the magnetic entropy change (??S M) versus the magnetization data. An excellent agreement is found between the spontaneous magnetization determined from the entropy change [(??S M) vs. M 2] and the classical extrapolation from the Arrott curves (µ0H/M vs. M 2), thus confirming that the magnetic entropy is a valid approach to estimate the spontaneous magnetization in this system and in other compounds as well.  相似文献   

5.
Sorption of CH3 131I from a water vapor-air medium on porous inorganic sorbents based on silica gel of KSKG grade and containing triethylenediamine (CH2-CH2)3N2 and d element nitrates was studied. The sorbents prepared by impregnation with (CH2-CH2)3N2 and Zn, Ni, and Cu nitrates from aqueous solution recover CH3 131I from a water vapor-air flow poorly (degree of recovery <10%). Calcination of the sorbents at temperatures exceeding 250°C does not noticeably affect their sorption power. Heating of the complex Ag(NO3)(OH)·(CH2-CH2)3N2H to 160°C causes its exothermic decomposition with a large heat release and formation of metallic silver. Thermal decomposition of the complex of Cu2+ with (CH2-CH2)3N2, synthesized from an aqueous solution at the molar ratio Cu(NO3)2: (CH2-CH2)3N2 = 1: 2, occurs similarly.  相似文献   

6.
The novel Ca4?x(PO4)2O: xDy3+ and Ca4?x?y(PO4)2O: xDy3+, yEu2+ multi-color phosphors were synthesized by traditional solid-state reaction. The crystal structure, particle morphology, photoluminescence properties and energy transfer process were investigated in detail. The X-ray diffraction (XRD) results demonstrate that the products showed pure monoclinic phase of Ca4(PO4)2O when x < 0.1. The scanning electron microscopy (SEM) indicated that the phosphors were grain-like morphologies with diameters of ~ 3.7–7.0 μm. Under excitation of 345 nm, Dy3+-doped Ca4(PO4)2O phosphors showed multi-color emission bands at 410, 481 and 580 nm originated from oxygen vacancies and Dy3+. Interestingly, Ca4(PO4)2O: Dy3+, Eu2+ phosphors exhibited blue emission band at 481 nm and broad emission band from 530 to 670 nm covering green to red regions. The energy transfer process from Dy3+ to Eu2+ was observed for the co-doped samples, and the energy transfer efficiency reached to 60% when Eu2+ molar concentration was 8%. In particular, warm/cool/day white light with adjustable CCT (2800–6700 K) and high CRI (Ra > 85) can be obtained by changing the Eu2+ co-doping contents in Ca4(PO4)2O: Dy3+, Eu2+ phosphors. The optimized Ca3.952(PO4)2O: 0.04Dy3+, 0.008Eu2+ phosphor can achieve the typical white light with CCT of 4735 K and CRI of 87.  相似文献   

7.
A study of the structural characteristics of the composites [Pb(Fe0.5Nb0.5)O3(PFN)] x -[Cr0.75Fe1.25O3(CRFO)]100?x (x = 0 (CRFO100), 10, 50, 90, 100) was performed in this work. The compounds PFN100 and CRFO100 were prepared by conventional solid-state method and investigated by X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), and 57Fe Mössbauer Spectroscopy techniques. The X-ray analysis shows that PFN100 is tetragonal and the CRFO100 phase has a trigonal symmetry. The refinement of all the composites was also performed and discussed in this paper. The Mössbauer spectrum for the composite samples shows a paramagnetic doublet and a sextet probably assigned to a magnetic phase associated to Fe+3. For the sample PFN100, only a magnetic field of 49.5 T (isomer shift (δ) = 0.21 mm/s) was detected. For the composite sample, the δ and Δ are typical of Fe ions at sites of octahedral coordination.  相似文献   

8.
The effects of pre-annealing treatments on the soft magnetic properties of the corresponding Fe78Si9B13 amorphous powder cores were investigated. The amorphous powder cores prepared from pre-annealed powder have better soft magnetic properties compared with unpretreated powder core in the as-cast state. The result shows that the powder after pre-annealing in a magnetic field presents a regular domain structure and the soft magnetic properties of the corresponding powder cores are greatly improved. As the result, the magnetic-field annealed powder core has the highest effective permeability (μ e) of 37, which is 23 % higher than the as-cast one and 7 % than only vacuum-annealed one. The total core loss (P cv) for the core annealed in magnetic field is only 141 W/kg (100 kHz, 50 mT) and as low as 36 % of the P cv for the powder core in the as-cast state. The one annealed in magnetic field also exhibits the best DC bias properties of 92 %. This work provides a novel approach to realizing low P cv and high μ e for Fe78Si9B13 powder cores and also validates the application prospect of powder cores in the work condition of different ripple currents, different loads and a wide frequency (f) range (10 kHz–10 MHz).  相似文献   

9.
Ultrafine strontium barium niobate (Sr0.3Ba0.7Nb2O6, SBN30) powders were prepared by urea method starting from a precursor solution constituting of Sr (NO3)2, Ba (NO3)2, NbF5, urea and polyvinyl alcohol (PVA) as surfactant. Their structural behavior and morphology were examined by means of X-ray diffractometry (XRD) and Scanning electron microscopy (SEM). The results showed that the SBN30 powders crystallized to a pure tetragonal phase at annealing temperatures as low as 750 °C. The average particle size of SBN powders subjected to 750 °C was of the order of 150–300 nm. With increasing calcination temperature,however, the average particle size of the calcined powders increased. The SBN30 ceramic prepared from urea method can be sintered at temperature as low as 1,225 °C. The transition temperature from the ferroelectric phase to the paraelectric phase and the relative dielectric permittivity of the SBN30 powder were less than the corresponding values of the bulk ceramic. The permittivity and loss tangent (tan δ) at room temperature (1 kHz) was found to be 930 and below 0.025.  相似文献   

10.
Single crystals of [PuO2(NO3)2(TPPO)2] (TPPO = OPPh3) isostructural to the related compounds of uranyl and neptunyl were isolated, and the structure of this complex was determined. Contrary to the complexes [AnO2(TPPO)4](ClO4)2 studied previously, the interatomic distances and volumes of coordination polyhedra of An in these compounds somewhat decrease in the series U-Np-Pu. This difference was attributed to a change in the number of TPPO ligands in the compounds and weakening of their interaction with oxygen atoms of the AnO 2 2+ groups in passing from [AnO2(TPPO)2](ClO4)2 to [AnO2(No3)2(TPPO)2].  相似文献   

11.
This paper describes the preparation of a lithium ion conducting solid electrolyte with the composition Li1.5Al0.5Ge1.5(PO4)3 by a new liquid-phase method with the use of the water-soluble salts Al(NO3)3 · 9H2O, LiNO3 · 3H2O, and (NH4)2HPO4 and the germano-oxalic acid H2[Ge(C2O4)3]. The synthesized materials have been characterized by X-ray diffraction, differential scanning calorimetry, thermogravimetry, and impedance spectroscopy. The results demonstrate that sintering of the synthesized amorphous powders at a temperature of 650°C leads to the formation of phase-pure Li1.5Al0.5Ge1.5(PO4)3. The ionic conductivity of the electrolyte measured at frequencies from 10 Hz to 2 MHz using pellets with an 86% relative density was 4.2 × 10–4 S/cm.  相似文献   

12.
Mn-doped Li3V2?x Mn x (PO4)3 nanocrystals with enhanced electrochemical properties for lithium-ion batteries were synthesized by aerosol process successfully. The nanocrystals synthesized from aerosol-assisted spray process have an average particle size smaller than 500 nm, with some initial particle size of about 100 nm. The Mn-doped Li3V2(PO4)3 cathode materials show higher capacity and coulombic efficiency than pure Li3V2(PO4)3 materials. Especially, the Mn-doped Li3V1.94Mn0.06(PO4)3 shows a capacity of 130 mAh/g in the voltage range of 3.0–4.4 V and a coulombic efficiency of 99.5 % at 1C. The results from XRD, SEM, HRTEM, and EIS suggested that lattice changes of Li3V2(PO4)3 due to Mn doping and the fine particles enabled by aerosol-assisted spray process can significantly reduce the charge-transfer resistance and improve the apparent Li+ diffusion coefficient of insertion/desertion in the electrodes, which were the critical reason of better electrochemical performance of Mn-doped Li3V2(PO4)3 cathode materials.  相似文献   

13.
The Ba3(VO4)2–x wt% Co2O3 (x?=?0.5–5) ceramics were prepared by the solid state reaction method in order to reduce the sintering temperature. The effects of the Co2O3 additions on the phase composition, microstructures, sintering characteristics and microwave dielectric properties of Ba3(VO4)2 ceramics are investigated by an X-ray diffractometer, a scanning electron microscope and a network analyzer. As a result, the Q?×?f value of 54,000 GH, the ε r of 14.6 and the τf value of +58.5 ppm/°C were obtained in the sample of the Ba3(VO4)2–3 wt% Co2O3 ceramic sintered at the temperature of 925 °C, which is capable to co-fire with electrode metal of high conductivity such as Ag (961 °C). Moreover, the Q?×?f values of the sample with Co2O3 higher than that of 3 wt% additions decreased because of the formation of Ba2V2O7 phase.  相似文献   

14.
ZnO nanowires have been grown on polycrystalline Zn2GeO4:Mn substrates for the first time using a chemical vapor deposition method. Both Zn and ZnO sources were used to supply Zn vapor in the growth process of ZnO nanowires. The Zn2GeO4:Mn substrates were prepared using solid-state ceramic synthesis methods, and average grain sizes of ~1 μm were achieved. The nanowires of diameters in the range of 100–200 nm and length of ~30 μm were observed. In addition to nanowires, other morphologies of ZnO nanostructures, such as ZnO tetrapods, were observed when Zn powder was used as the source for the CVD growth. The results reveal that polycrystalline substrates are also promising as novel alternative substrates for growth of ZnO nanostructures. The as-synthesized ZnO nanowire/Zn2GeO4:Mn composites are being developed for future electroluminescent devices.  相似文献   

15.
We have studied general trends of crystallization from high-temperature solutions in the K2O-P2O5-V2O5-Bi2O3 system at P/V = 0.5?2.0, K/(P + V) = 0.7?1.4, and Bi2O3 contents from 25 to 50 wt % and identified the stability regions of BiPO4, K3Bi5(PO4)6, K2Bi3O(PO4)3, and K3Bi2(PO4)3 ? x (VO4) x (x = 0?3) solid solutions. The synthesized compounds have been characterized by X-ray powder diffraction and IR spectroscopy, and the structure of two solid solutions has been determined by single-crystal X-ray diffraction (sp. gr. C 2/c): K3Bi2(PO4)2(VO4), a = 13.8857(8), b = 13.5432(5), c = 6.8679(4) Å, β = 114.031(7)°; K3Bi2(PO4)1.25(VO4)1.75, a = 13.907(4), b = 13.615(2), c = 6.956(2) Å, β = 113.52(4)°.  相似文献   

16.
The complex [UO2(OH)(CO(NH2)2)3]2(ClO4)2 (I) was synthesized. A single crystal X-ray diffraction study showed that compound I crystallizes in the triclinic system with the unit cell parameters a = 7.1410(2), b = 10.1097(2), c = 11.0240(4) Å, α = 104.648(1)°, β = 103.088(1)°, γ = 108.549(1)°, space group \(P\bar 1\), Z = 1, R = 0.0193. The uranium-containing structural units of the crystals are binuclear groups [UO2(OH)· (CO(NH2)2)3] 2 2+ belonging to crystal-chemical group AM2M 3 1 [A = UO 2 2+ , M2 = OH?, M1 = CO(NH2)2] of uranyl complexes. The crystal-chemical analysis of nonvalent interactions using the method of molecular Voronoi-Dirichlet polyhedra was performed, and the IR spectra of crystals of I were analyzed.  相似文献   

17.
Magnesium niobate (MgNb2O6) powder was synthesized by the conventional ceramic route as well as by the molten salt route using a eutectic mixture of NaCl-KCl as the salt and Mg(NO3)2-6H2O and TiO2 as the starting materials. Pure phase of MgNb2O6 could be obtained by the molten salt method at 1100°C. However, in ceramic method the pure phase of MgNb2O6 was obtained by heating at 1025°C for 20 h. On sintering at 1100°C the dielectric constant and dielectric loss of MgNb2O6 obtained by the molten salt method was found to be 19.5 and 0.004 at 100 kHz at room temperature. Lower values were obtained for these oxides prepared by the ceramic route, 16.6 and 0.000518, respectively. In both cases the dielectric constant was quite stable with frequency.  相似文献   

18.
Single crystals of Rb2CaB8O26H24, a new non-centrosymmetric borate material, have been grown with sizes up to 8 × 5 × 3 mm3 by the slow evaporation of water solution at room temperature. The structure of the compound was determined by single-crystal X-ray diffraction. It crystallizes in the orthorhombic system, space group P212121 with a = 11.5288(3) Å, b = 12.6334(4) Å, c = 16.6966(4) Å, Z = 4 and R 1 = 0.0405, wR 2 = 0.1043. Ultraviolet (UV)–vis spectrum transmission is performed on the Rb2CaB8O26H24, which shows an absorption edge about 195 nm in the UV region. Thermal properties were investigated by TG–DSC analysis. The powder second-harmonic generation (SHG) intensity measured by the Kurtz-Perry method indicates that Rb2CaB8O26H24 has about one-third of KDP (KH2PO4).The influence of different molar ratios and evaporation speed of water solution on crystal quality and size was also performed on the reported material.  相似文献   

19.
A complete characterization of corrosion products formed on zinc plates after exposure in a climatic chamber was conducted in this study. The dry deposition of NO2, SO2, and SO2 + NO2, at 25 °C and 35 °C, and relative humidity (RH) of 90% was simulated. Pollutant concentrations evaluated were selected to represent highly polluted industrial atmospheric levels. Analysis techniques included X-ray Photoelectron Spectroscopy (XPS) and Grazing Incidence X-ray Diffraction (GIXD). For tests conducted at 25 °C, the relative amount of sulfate was determined to be higher in the SO2 + NO2 atmosphere than in the SO2 atmosphere, and was associated with greater corrosivity in the former atmosphere. NO2 had an indirect role as a catalyst for SO2 reduction to sulfate, as evidenced by the greater proportion of sulfate ions detected and the lack of nitrogen compounds in corrosion products. At 35 °C, effect of NO2 was reduced, and was complicated by a greater tendency for drying so that it was more difficult to maintain the humidity layer. Therefore, no accelerating effect of exposure temperature was observed.  相似文献   

20.
The compound [NH3(CH2)9NH3]2[(UO2)3(SeO4)5(H2O)2](H2O)x (1) was prepared by isothermal evaporation from aqueous uranyl selenate solutions containing 1,9-diaminononane. A structural study showed that the compound is a partially ordered organic-inorganic nanocomposite. The structural model of the inorganic complex was determined by single crystal X-ray diffraction a = 19.5572(5), c = 47.878(2) Å, V= 15859.1(9) Å3, Z= 12; R1 = 0.1318, wR2 = 0.3186 for 2808 reflections with |Fo| ≥ 4σF). The structure consists of double hydrogen-bonded [(UO2)3(SeO4)5(H2O)2]2- layers parallel to the (001) plane. The disordered protonated 1,9-diaminononane molecules and water molecules are arranged between the layers. The inorganic layered complex [(UO2)3(SeO4)5(H2O)2]2- belongs to a new type that was not observed previously in the structures of inorganic and organometallic compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号