首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Lead-free (K0.5Na0.5)(Nb1-xGe x )O3 (KNN-xGe, where x = 0-0.01) piezoelectric ceramics were prepared by conventional ceramic processing. The effects of Ge4+ cation doping on the phase compositions, microstructure and electrical properties of KNN ceramics were studied. SEM images show that Ge4+ cation doping improved the sintering and promoted the grain growth of the KNN ceramics. Dielectric and ferroelectric measurements proved that Ge4+ cations substituted Nb5+ ions as acceptors, and the Curie temperature (TC) shows an almost linear decrease with increasing the Ge4+ content. Combining this result with microstructure observations and electrical measurements, it is concluded that the optimal sintering temperature for KNN-xGe ceramics was 1020°C. Ge4+ doping less than 0.4 mol.%can improve the compositional homogeneity and piezoelectric properties of KNN ceramics. The KNN-xGe ceramics with x = 0.2% exhibited the best piezoelectric properties: piezoelectric constant d33 = 120 pC/N, planar electromechanical coupling coefficient kp = 34.7%, mechanical quality factor Qm = 130, and tanδ = 3.6%.  相似文献   

2.
Novel green-emitting piezoelectric ceramics of SrBi4?x Er x Ti4O15 (SBT-xEr) were prepared. Strong up-conversion with bright green (524 and 548 nm) and a relatively weak red (660 nm) emission bands were obtained under 980 nm excitation at room temperature, which is attributed to the intra 4f–4f electronic transition of (2H11/2, 4S3/2)–4I15/2 and the transition from 4F9/2 to 4I15/2 of Er3+ ions, respectively. Simultaneously, Er3+ doping promotes the electrical properties. At 0.8 mol%Er, the optimal electric properties with high Curie temperature of T c?~527?°C, large remanent polarization of 2P r?~14.92 μC/cm2 and piezoelectric constant of d 33?~17 pC/N was achieved. As a multifunctional material, Er3+ doped SBT showed a great potential to be used in 3D-display, bio-imaging, solid state laser and optical temperature sensor.  相似文献   

3.
The upconversion luminescence (UCL) of nanocrystalline gadolinium oxide (Gd2O3) doped with Er3+ and Yb3+ ions has been studied in the temperature range of 90–400 K. The nanocrystals were synthesized by chemical vapor deposition and possessed a cubic crystalline structure with an average particle size within 48–57 nm. It is established that the USL intensity in the red (4F9/24I15/2 transition in Er3+ ion) and green (4S3/24I15/2 transition) spectral regions depends on the sample temperature and concentration of dopant ions, as well as on the additional structural defects (anion vacancies) created in the crystal lattice by the introduction of Zn2+ ions or irradiation with high-energy (10 MeV) electrons. The luminescence efficiency and spectrum of the upconversion phosphor are determined by energy transfer processes.  相似文献   

4.
A series of Gd11–xy Yb x Er y GeP3O26 germanate phosphates differing in the ratio of the Yb3+ and Er3+ active ions have been synthesized, and their luminescence spectra have been measured. According to X-ray diffraction characterization results, all of the synthesized germanate phosphates are single-phase and have a triclinic structure (sp. gr. P1). We have measured upconversion luminescence spectra due to the Er3+ 2H11/2, 4S3/24I15/2 and 4F9/24I15/2 radiative transitions in the synthesized gadolinium ytterbium erbium germanate phosphates and determined the luminescence upconversion energy yield (B en) in Gd11–xy Yb x Er y GeP3O26. The effects of the concentrations and ratio of the dopants in the Gd11(GeO4)(PO4)3O10 germanate phosphate host on B en and the ratio of the luminescence intensities in the red and green spectral regions (R/G) have been assessed.  相似文献   

5.
Sm3+-activated NaSrPO4 phosphors could be efficiently excited at 403 nm, and exhibited a bright red emission mainly including four wavelength peaks of 565, 600, 646 and 710 nm. The highest emission intensity was found for NaSr 1?x PO4: xSm3+ with a composition of x = 0.007. Concentration quenching was observed as the composition of x exceeds 0.007. The decay time values of NaSr1?x PO 4 : xSm3+ phosphors range from around 2.55 to 3.49 ms. NaSr1?x PO4: xSm3+ phosphor shows a higher thermally stable luminescence and its thermal quenching temperature T 50 was found to be 350°C, which is higher than that of commercial YAG:Ce3+ phosphor and ZnS:(Al, Ag) phosphor. Because NaSr1?x PO4: xSm3+ phosphor features a high colour-rendering index and chemical stability, it is potentially useful as a new scintillation material for white light-emitting diodes.  相似文献   

6.
Single-phase ceramic samples of La1–xNdxInO3 (0.007 ≤ x ≤ 0.05), LaIn0.99M0.01O3, and La0.95Nd0.05In0.995M0.005O3 (M = Cr3+ and Mn3+) solid solutions have been prepared by solid-state reactions, and their crystal structure, magnetic field dependences of their specific magnetization at 5 and 300 K, and temperature dependences of their molar magnetic susceptibility have been studied. It has been shown that the 300-K specific magnetization of the La1–xNdxInO3 (x = 0.02, 0.05), La0.95Nd0.05In0.995M0.005O3 (M = Cr3+ and Mn3+), and LaIn0.99Mn0.01O3 solid solutions increases linearly with increasing magnetic field strength up to 14 T and that the magnitude of the 300-K specific magnetization of the La0.993Nd0.007InO3 and LaIn0.99Cr0.01O3 solid solutions increases linearly, but they have diamagnetic magnetization. At a temperature of 5 K, the magnetization of all the indates studied here increases nonlinearly with increasing magnetic field strength, gradually approaching magnetic saturation, without, however, reaching it in a magnetic field of 14 T. In the temperature range where the Curie–Weiss law is obeyed (5–30 K), the effective magnetic moments obtained for the Nd3+ ion (\({\mu _{effN{d^{3 + }}}}\)) in the La1–xNdxInO3 solid solutions with x = 0.007, 0.02, and 0.05 are 2.95μB, 3.09μB, and 2.75μB, respectively, which is well below the theoretical value \({\mu _{effN{d^{3 + }}}}\)= 3.62μB. The effective magnetic moments of the Cr3+ and Mn3+ ions in the LaIn0.99Cr0.01O3 and LaIn0.99Mn0.01O3 solid solutions are 3.87μB and 5.11μB, respectively, and differ only slightly from the theoretical values \({\mu _{effC{r^{3 + }}}}\)= 3.87μB and \({\mu _{effM{n^{3 + }}}}\)= 4.9μB.  相似文献   

7.
Bi2–хLaхFe4O9 and Bi2Fe4–2xTixCoxO9 ferrites have been prepared by solid-state reactions at a temperature of 1073 K. X-ray diffraction data indicate that, in the Bi2–хLaхFe4O9 system, the limiting degree of La3+ substitution for Bi3+ ions in Bi2Fe4O9 does not exceed 0.05 and that the limiting degree of substitution in the Bi2Fe4–2xTixCoxO9 system lies in the range 0.05 < x < 0.1. The specific magnetization and specific magnetic susceptibility of the samples have been measured at temperatures from 5 to 300 K in a magnetic field of 0.86 T. The field dependences of magnetization obtained for the Bi2–хLaхFe4O9 and Bi2Fe4–2xTixCoxO9 ferrites at temperatures of 300 and 5 K demonstrate that partial isovalent substitution of La3+ for Bi3+ ions in Bi2Fe4O9 and heterovalent substitution of Ti4+ and Co2+ ions for two Fe3+ ions leads to partial breakdown of the antiferromagnetic state and nucleation of a ferromagnetic state.  相似文献   

8.
In this work, (Ba0.96Ca0.04)(Ti0.92Sn0.08)O3xmol MnO (BCTS–xMn) lead-free piezoelectric ceramics were fabricated by the conventional solid-state technique. The composition dependence (0 ≤ x ≤ 3.0 %) of the microstructure, phase structure, and electrical properties was systematically investigated. An O–T phase structure was obtained in all ceramics, and the sintering behavior of the BCTS ceramics was gradually improved by doping MnO content. In addition, the relationship between poling temperature and piezoelectric activity was discussed. The ceramics with x = 1.5 % sintering at temperature of 1330 °C demonstrated an optimum electrical behavior: d 33 ~ 475 pC/N, k p ~ 50 %, ε r ~ 4060, tanδ ~ 0.4 %, P r ~ 10.3 μC/cm2, E c ~ 1.35 kV/mm, T C ~ 82 °C, strain ~0.114 % and \(d_{33}^{*}\) ~ 525 pm/V. As a result, we achieved a preferable electric performance in BaTiO3-based ceramics with lower sintering temperature, suggesting that the BCTS–xMn material system is a promising candidate for lead-free piezoelectric ceramics.  相似文献   

9.
We report the first fluorine doping of lead magnesium niobate in the PbMg (1 + x)/3Nb(2 ? x)/3O3 ? x F x system in a wide composition range, x = 0.025 to 0.625. The fluorine content of the samples is shown to be substantially lower than the intended one because of the fluorine volatilization in the form of HF during synthesis and sintering in air. The ceramics consist of magnesium and lead oxides undetectable by x-ray diffraction, and a perovskite phase whose composition can be represented by the formula PbMg(1 + m)/3Nb(2 ? m)/3O3 ? m F m , where the fluorine content after sintering is m ≤ 0.12. The PbO and MgO contents of the ceramics depend on the starting mixture composition (x) and heat-treatment conditions (hydrogen fluoride and lead oxide volatilization). As a result of the low fluorine content, the diffraction patterns of the samples show no superlattice reflections, and their lattice parameter varies insignificantly with x. Data are presented on the temperaturedependent dielectric permittivity of ceramic samples sintered and annealed under different conditions.  相似文献   

10.
A series of K2TiF6:xMn4+ @NaF samples were prepared by the cation exchange method in HF solution. Coating effects of NaF on the fluorescent properties of the samples were discussed. It is interesting that NaF has induced enhancement of luminous efficiency for the samples. Mechanism of NaF induced enhanced luminescence effect was suggested. That is that the enhancement effect of NaF coating is mainly attributed to a suitable local distortion of the crystal field surrounding the Mn4+ activator through doping with NaF. The results indicate that the optimal conditions are x?=?0.07 and wNaNO3?=?2.5 g. Decay lifetime and the photoluminescence quantum yield of the optimal sample are 5.25 ms and 99.19?±?0.03%, respectively. The chromaticity coordinates of the optimal sample are x?=?0.6926, y?=?0.3073. So, the phosphor emits deep red light, which can be applied for blue light-based white LED.  相似文献   

11.
In this work, the nominal CaCu3?xMgxTi4.2O12 (0.00, 0.05 and 0.10) ceramics were prepared by sintering pellets of their precursor powders obtained by a polymer pyrolysis solution method at 1100 °C for different sintering time of 8 and 12 h. Very low loss tangent (tanδ)?<?0.009–0.014 and giant dielectric constant (ε′) ~?1.1?×?104–1.8?×?104 with excellent temperature coefficient (Δε′) less than ±?15% in a temperature range of ??60 to 210 °C were achieved. These excellent performances suggested a potent application of the ceramics for high temperature X8R and X9R capacitors. It was found that tanδ values decreased with increasing Mg2+ dopants due to the increase of grain boundary resistance (Rgb) caused by the very high density of grain, resulting from the substitution of small ionic radius Mg2+ dopants in the structure. In addition, CaCu3?xMgxTi4.2O12 ceramics displayed non-linear characteristics with the significant enhancements of a non-linear coefficient (α) and a breakdown field (Eb) due to Mg2+doping. The high values of ε′ (14012), α (13.64) and Eb (5977.02 V/cm) with very low tanδ value (0.009) were obtained in a CaCu2.90Mg0.10Ti4.2O12 ceramic sintered at 1100 °C for 8 h.  相似文献   

12.
Different components of La0.7?x Ho x Sr0.3MnO3 (LHSMO, x = 0, 0.1, 0.2, 0.3) ceramics were fabricated by Plasma-Activated Sintering (PAS), so as to study the correlation between the contents of Ho3+ and the structural, electrical, magnetic properties. XRD and SEM confirmed that LHSMO ceramics prepared by PAS exhibited high-purity phase and dense microstructure. The measurement of electrical resistivity showed that the resistivity of LHSMO ceramics increased, and the metal–insulator transition temperature decreased with the increasing Ho-doping content. The resistivity data were then fitted using various empirical equations, and the conduction mechanism of LHSMO ceramics was found to be in accord with the electron–magnon scattering process in the low-temperature region and the small polaron hopping model in the high-temperature region. Lastly, we calculated the values of magnetoresistance of the LHSMO ceramics, which increased with increasing Ho-doping content, from 3.5% for x = 0 to 14.6% for x = 0.3. Therefore, the doping of Ho3+ into La0.7Sr0.3MnO3 can effectively enhance the low-field magnetoresistance effect.  相似文献   

13.
A series of Sr3Gd1?xLi(PO4)3F: xSm3+ (x?=?0.02, 0.04, 0.06, 0.08) phosphors were synthesized by a high-temperature solid state method. The Sm3+ activated Sr3GdLi(PO4)3F phosphors can be efficiently excited by the wavelengths in the range from 350 to 450 nm, which matches perfectly with that of the commercial near-UV LED chips. The optimal doping concentration of Sr3Gd1?xLi(PO4)3F: xSm3+ phosphors was determined to be x?=?0.04, corresponding to the quantum efficiency of 2.23%, and the CIE chromaticity coordinates (x?=?0.5172, y?=?0.4641). The concentration quenching mechanism of Sm3+ in Sr3GdLi(PO4)3F host is mainly attributed to the dipole–dipole interaction, which was confirmed by the fluorescent lifetimes. The effect of temperature on the photoluminescence property of Sr3GdLi(PO4)3F: Sm3+ was investigated. 90% of the intensity is preserved at 150 °C. In addition, a white light emitting diode (WLED) lamp was fabricated by a 405 nm n-UV LED chip coated with Sr3Gd0.96Li(PO4)3F:0.04Sm3+ phosphor and commercial yellow phosphor (YAG: Ce3+) of a certain mass ratio. The present work indicates that the Sr3GdLi(PO4)3F: Sm3+ orange–red-emitting phosphors tend to be potential application in n-UV WLED.  相似文献   

14.
The effect of BiErO3 (BE) as a doping material on the structural, dielectric and ferroelectric properties of (KNa)NbO3 ceramics was explored in this research. Co-existence of two phase regions was confirmed in the composition range at x?=?0.5% and x?=?1.0%. The addition of BE content led to a decrease of the grain size and the ceramics became denser. Bulk P–E hysteresis loops were obtained with a maximum polarization of P max = 30.56 µC/cm2 and a remnant polarization of P r = 25.10 µC/cm2, along with a coercive field of E c  ~ 11.26 kV/cm. The results revealed that a field strain value of ~?0.26 for x?=?0.5% of BE substitution was attained. This presents outstanding piezoelectric and dielectric properties.  相似文献   

15.
The photoluminescence (PL) spectra and Eu2+ excited state lifetime of EuGa2S4 and EuGa2S4:Er3+ have been studied in the range 78–500 K. The spectra show a band at 545 nm, due to the 4f 65d → 4f 7(8 S 7/2) transition. With increasing temperature, the full width at half maximum Γ(T) of the PL band of EuGa2S4 and EuGa2S4:Er3+ crystals increases from 0.15 to 0.22 and from 0.13 to 0.19 eV, respectively. Over the entire temperature range studied, Γ(T) is a linear function of T 1/2. The 545-nm emission intensity and Eu2+ excited state lifetime in EuGa2S4 and EuGa2S4:Er3+ vary exponentially with temperature. The luminescence quenching energies evaluated from the Arrhenius plots of I(103/T) and τ(103/T) coincide (0.10 eV) within the error of determination.  相似文献   

16.
(1 ? x)PbMg1/3Nb2/3O3 · xPbZrO3 (1 ? x)PMN · xPZ) solid solutions have been synthesized at a pressure of 5 GPa and temperatures from 1300 to 1700 K, and their structural and dielectric properties have been studied. The composition dependences of the average unit-cell parameter and dielectric permittivity for the solid solutions indicate that the PMN-PZ system has a morphotropic phase boundary near x = 0.65. The solid solutions have a cubic structure for x < 0.65, a rhombohedral structure in the range 0.65 < x < 0.9, and an orthorhombic structure (similar to that of PbZrO3) for x > 0.9. The temperature and frequency dependences of dielectric permittivity suggest that the (1 ? x)PMN · xPZ samples with x < 0.65 consist of two ferroelectric phases: a relaxor with antipolar dipole order and a normal ferroelectric with a diffuse phase transition. The effect of annealing temperature on the ferroelectric state of the samples with x < 0.65 is examined. In the composition range 0.65 < x < 0.9, the samples have normal ferroelectric properties, independent of annealing temperature.  相似文献   

17.
Lead-free ceramics (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3?x wt.%Cr2O3 (BCZT-xCr) were prepared via the conventional solid-state reaction method. The microstructure and electrical properties of BCZT-xCr samples were systematically studied. XRD and Raman results showed that all samples possessed a single phased perovskite structure and were close to the morphotropic phase boundary (MPB). With the increase of the Cr content, the rhombohedral-tetragonal phase transition temperature (T R-T) increases slightly, and the Curie temperature (T C) shifts towards the low temperature side. XPS analysis reveals that Cr3+ and Cr5 + ions co-existed in Cr-doped BCZT ceramics, indicating the different impact on the electrical properties from Cr ions as “acceptor” or “donor”. For the x = 0.1 sample, relative high piezoelectric constants d 33 (~316 pC/N) as well as high Q m (~554) and low tanδ (~0.8%) were obtained. In addition, the AC conductivity was also investigated. Hopping charge was considered as the main conduction mechanism at low temperature. As the temperature increases, small polarons and oxygen vacancies conduction played important roles.  相似文献   

18.
The electrical conductivity of an optical fluoride ceramic in the quaternary system BaF2 + ZnF2 + CdF2 + YbF3 has been determined in the temperature range 338–722 K using impedance spectroscopy (5 to 5 × 105 Hz). The 500-K ionic conductivity of the ceramic is σ = 3.3 × 10–4 S/cm, which corresponds to the electrical characteristics of single crystals of the best conducting nonstoichiometric M1–x R x F2 + x (M = Sr, Ba; R = La–Nd; x = 0.3–0.5) fluorite phases. We have observed nonmonotonic variation (breaks) in temperature-dependent σ, which is due to competing fluoride ion transport processes in different parts of the ceramic sample. The highly conductive state of the BaF2 + ZnF2 + CdF2 + YbF3 fluoride ceramic seems to be due to the formation of structural regions corresponding to a Ba1–x Yb x F2 + x solid solution.  相似文献   

19.
Barium hexagonal ferrites (BaNd x Fe12?x O 19) have been synthesized by initial high-energy milling of the precursors and calcining subsequently. The as-prepared samples are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and vibrating sample magnetometry (VSM). XRD and SEM examinations reveal that a high-crystallized hexagonal BaNd x Fe12?x O 19 with lamellar morphology is obtained when the precursor is calcined at 1200°C in air for 3 h. The hexagonal crystalline structure of BaFe12 O 19 is not changed after doping Nd3+ ions in BaFe12 O 19. However, lattice parameters a and b values increase with an increase in Nd content at first, then decrease. Nd substitution may improve the magnetic properties of BaNd x Fe12?x O 19. BaNd0.1Fe11.9 O 19, obtained at 1050°C, has the highest specific saturation magnetization value (80.81 emu/g) and magnetic moment (16.21 μ B); BaNd0.2Fe11.8 O 19, obtained at 950°C, has the highest coercivity value, 4075.19 Oe.  相似文献   

20.
Monoclinic structured Mg1?xNixZrNb2O8 (0?≤?x?≤?0.12) ceramics were synthesized for the first time through traditional solid-state reaction process and pure phase were obtained in all range. Rietveld refinement was used to analyze the crystal structure. With the increase of Ni2+ substitution amount, ε r decreased, Q?×?f rose first then fell, τ f shifted for the positive direction. Bond ionicity, lattice energy and bond energy were separately calculated to investigate the correlations with microwave dielectric properties. Typically, ceramics samples with the composition of Mg0.92Ni0.08ZrNb2O8 sintered at 1280 °C for 4 h exhibited the optimum microwave dielectric properties: ε r ?=?24.58, Q?×?f?=?74534.1 GHz, τ f ?=???49.11 ppm/°C, which could be a promising material for application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号