首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mn1?xZnxFe2O4 (x?=?0.2–0.8) ferrite samples were successfully prepared by the sol–gel method. X-ray diffraction study reveals that single cubic spinel phase was formed in Mn1?xZnxFe2O4 samples. The SEM micrographs revealed that the microstructures change significantly with different Zn2+ doping concentration and sintering temperature while the grain size grow up to 9.48 μm for Mn0.6Zn0.4Fe2O4 sample sintered at 1100 °C. Further, the dielectric and magnetic measurements indicated that both Zn2+ doping and sintering temperature could affect both electrical and magnetic parameters such as dielectric constant and saturation magnetization in a great manner. The Mn0.6Zn0.4Fe2O4 sample sintered at 1100 °C for 8 h is found to show the largest M s value (77.30 emu/g) in this work. These results indicate that Zn2+ doping or sintering temperature can adjust the microstructures, dielectric and magnetic properties of Mn1?xZnxFe2O4 ferrites.  相似文献   

2.
Transition divalent metal cations (Zn2+, Ti2+) doped V2O5 nanoparticles were synthesized via non-aqueous sol–gel route. The influence of dopant materials on the characteristics of V2O5 nanoparticles was studied. XRD studies ensure that all the prepared samples possess phase pure orthorhombic structure. From the FESEM images, it was noted that the products possess uniform particle size around 20–30 nm. The presence of functional groups and dopants was confirmed by FTIR, Raman, and elemental analysis respectively. From UV–Vis spectra, the significant blue shift was observed for doped samples compared to pure V2O5 nanoparticles, which is attributed to the quantum confinement effect. The high capacity retention of the intercalation compound was measured by using C–V study and implies that the prepared samples are very promising electrode materials for supercapacitor.  相似文献   

3.
Well-crystalline β-NaYF4:Yb3+, Ho3+, Tm3+ nanoparticles were synthesized by sol–gel method using isopropyl alcohol [(CH3)2CHOH] as a complexing agent. The samples were characterized by X-ray diffraction, scanning electron microscopic analysis and fluorescence spectrum analysis methods. Under the excitation of 980 nm laser diode (LD), the samples displayed bright upconversion luminescence (UCL), which was generated from the energy level transition of Ho3+ and Tm3+ ions. With the increase of Tm3+, Ho3+ and Yb3+-doping concentration, the UCL intensity of blue, green and red light emission of the samples varied. Calculation of the CIE color coordinate of the β-NaYF4:Yb3+, Ho3+, Tm3+ nanoparticles revealed that with the adjustment of Tm3+, Ho3+ and Yb3+ doping concentration and the excitation power of 980 nm LD, the multi-color UCL can be realized. Approximately single red light output with the CIE color coordinate of x?=?0.545, y?=?0.306 and white light output with the CIE color coordinate of x?=?0.325, y?=?0.320 can be obtained in the synthesized β-NaYF4: Yb3+, Ho3+, Tm3+ nanoparticles.  相似文献   

4.
Photoluminescence data of Eu-doped SnO2 xerogels are presented, yielding information on the symmetry of Eu3+ luminescent centers, which can be related to their location in the matrix: at lattice sites, substituting to Sn4+, or segregated at particles surface. Influence of doping concentration and/or particle size on the photoluminescence spectra obtained by energy transfer from the matrix to Eu3+ sites is investigated. Results show that a better efficiency in the energy transfer processes is obtained for high symmetry Eu3+ sites and low doping levels. Emission intensity from 5D07F1 transition increases as the temperature is raised from 10 to 240 K, under excitation at 266 nm laser line, because in this transition the multiphonon emission becomes significant only above 240 K. As an extension of this result, we predict high effectiveness for room temperature operation of Eu-based optical communication devices. X-ray diffraction data show that the impurity excess inhibits particle growth, which may influence the asymmetry ratio of luminescence spectra.  相似文献   

5.
A sol–gel method based on (H 2 S 2 5) a q as silicon precursor in the presence of NaCl and KCl mineralizers was used for the synthesis of the classical cobalt olivine (Co 2 SiO 4 ) ceramic pigment. The effect of this synthesis route on the colour properties was studied. Highly pure olivine phase was obtained after firing at 1200 ° C for 3 h. The resulting powders exhibited very intense violet colour, while their addition at only 1 wt% to an industrial transparent glaze was enough to produce a very intense blue–violet colouration. Based on the aspect of glazed ceramics, addition of pigments even at 0.5 wt% to the glaze resulted in a very interesting colour and opacity. By this appropriate minimization of the used pigment amount without compromising the colouring properties required during application, the obtained Co olivine could be more efficient, less toxic and less expensive.  相似文献   

6.
Phosphors of nanoparticles LaSrAl3O7:RE3+ (RE = Eu, Tb) have been prepared by a sol–gel method. The structure and luminescent properties of LaSrAl3O7:Eu3+ and LaSrAl3O7:Tb3+ phosphors were characterized by X-Ray diffraction (XRD) and atomic force microscopy (AFM), photoluminescence excitation and emission spectra were utilized. From XRD patterns, it is indicated that the phosphor LaSrAl3O7 forms without impurity phase at 900 °C. From AFM images, it is shown that the crystal size of the phosphors are about 60–80 nm. Upon excitation with ultraviolet (UV) irradiation, it is shown that there is a strong emission at around 617 nm corresponding to the forced electric dipole 5D07F2 transition of Eu3+, and at around 543 nm corresponding to the 5D47F5 transition of Tb3+. The dependence of photoluminescence intensity on Eu3+ (or Tb3+) concentration and annealing temperature were also studied in detail.  相似文献   

7.
In this work, CdTiO3 nanoparticles were synthesized through reaction between Cd(CH3COO)2.2H2O, Ti(OC4H9)4, trimesic acid as a new chelating agent and ethanol as solvent by Pechini sol–gel method. X-ray diffraction (XRD) patterns showed that CdTiO3 nanostructures have rhombohedral structure with diameter of about 35.61 nm. The structure, morphology and size of CdTiO3 nanoparticles were characterized by FT-IR, XRD, SEM and EDAX. The optical properties of the products were studied by DRS. Based on the results of experiments, it was found that temperature and time of calcination, pH and the solvent of reaction are important parameters for formation of CdTiO3 nanoparticles. Utilizing trimesic acid (benzene-1,3,5-tricarboxylic acid) as a new chelating agent for preparation of CdTiO3 nanostructures was initiative of this work.  相似文献   

8.
Bi3.6Ho0.4Ti3O12 and (Bi0.9Ho0.1)4−x/3Ti3−x V x O12 (BHTV) (x = 0.3, 1.2, 3.0 and 6.0%) thin films were prepared on Pt/Ti/SiO2/Si substrates by sol–gel method. The effect of V content on their microstructure and ferroelectric properties were investigated. All the BHTV samples consisted of the single phase of Bi-layered Aurivillius phase. The B-site substitution with high-valent cation of V5+, in Bi3.6Ho0.4Ti3O12 films, enhanced the remanent polarizations (2Pr) and reduced the coercive field (2Ec). The BHTV film with x = 0.3% exhibited the better electrical properties with 2Pr 45.5 μC/cm2, 2Ec 257 kV/cm, good insulting behavior, as well as the fatigue-free characteristic.  相似文献   

9.
The dielectric properties of Erbium doped CaCu3Ti(4–x)ErxO(12–δ) with x = 0, 0.05, 0.1 were synthesized by the sol–gel self combustion method. XRD (X-ray powder diffraction) analysis confirmed the formation of single-phase material in the samples calcined at 800 °C. Crystal structure does not change on doping with Erbium and it remains cubic in all the three compositions studied. It is found that lattice parameter increases slightly with Erbium doping. The surface morphology of CaCu3Ti(4–x)ErxO(12–δ) powders sintered at 950 °C in air for 3 h was observed using high resolution—scanning electron microscope and it shows that the grain size is in the range of 1–8 μm for these samples. Energy dispersive X-ray spectroscopy pattern confirmed the presence of Erbium with 1.9 and 4.86 atomic percentages with doping concentration. The dielectric characteristics of CaCu3Ti(4–x)ErxO(12–δ) were studied by LCR meter in the frequency range (100 Hz–1 MHz) at various temperatures (RT to 500 °C). Interestingly, the dielectric constant increases and dielectric loss had lower values than those of undoped CCTO.  相似文献   

10.
CeO2 and Co3O4–CeO2 nanoparticles were synthesized, thoroughly characterized, and evaluated in the COPrOx reaction. The CeO2 nanoparticles were synthesized by the diffusion-controlled precipitation method with ethylene glycol. A notably higher yield was obtained when H2O2 was used in the synthesis procedure. For comparison, two commercial samples of CeO2 nanoparticles (Nyacol®)—one calcined and the other sintered—were also studied. Catalytic results of bare CeO2 calcined at 500 °C showed a strong influence of the method of synthesis. Despite having similar BET area values, the CeO2 synthesized without H2O2 was the most active sample. Co3O4–CeO2 catalysts with three different Co/(Co + Ce) atomic ratios, 0.1, 0.3, and 0.5, were prepared by the wet impregnation of the CeO2 nanoparticles. TEM and STEM observations showed that impregnation produced mixed oxides composed of small CeO2 nanoparticles located both over the surface and inside the Co3O4 crystals. The mixed oxide catalysts prepared with a cobalt atomic ratio of 0.5 showed methane formation, which started at 200 °C due to the reaction between CO2 and H2. However, above 250 °C, the reaction between CO and H2 became important, thus contributing to CO elimination with a small H2 loss. As a result, CO could be totally eliminated in a wide temperature range, from 200 to 400 °C. The methanation reaction was favored by the reduction of the cobalt oxide, as suggested by the TPR experiments. This result is probably originated in Ce–Co interactions, related to the method of synthesis and the surface area of the mixed oxides obtained.  相似文献   

11.
We prepared Sn1?x Fe x O2 (x = 0, 0.03, 0.05, 0.10, and 1.0) nanoparticles by the polymeric precursor method based on the modified Pechini process. Two types of starting reactants for both tin and iron were explored: Sn(II)/Fe(II) and Sn(IV)/Fe(III) precursors. Thermogravimetric analysis revealed that the precursor powders prepared from Sn(IV) have higher excess in ethylene glycol in comparison to precursor samples prepared from Sn(II). XRD patterns for those samples prepared from Sn(IV) and Fe(III) were adequately fitted by introducing only the cassiterite phase of SnO2. Micro-Raman spectra also support these findings, and additionally it is found that the presence of iron broadened and reduced the intensities of the principal bands. 119Sn Mössbauer spectra indicated only the presence of Sn4+, whereas RT 57Fe Mössbauer spectra suggested the presence of two Fe3+ sites located at different distorted sites. On the other hand, micro-Raman and 57Mössbauer spectrometry showed the formation of hematite as impurity phase for those samples with iron concentrations above ~5 at.%, prepared from Fe(II) and Sn(II) precursors. In addition, their XRD patterns revealed larger average grain sizes for the cassiterite phase of SnO2 in comparison to those samples prepared from Sn(IV) and Fe(III).  相似文献   

12.
The effect of sintering temperature from 1350 to 1450 °C on the dielectric and varistor properties of SnO2–Zn2SnO4 composite ceramics has been systematically investigated. With the increasing of sintering temperature, the average grain size increased from about 1 to 5 μm and the breakdown electric field decreased from 117 to 3 V/mm. The relative dielectric constant increased with sintering temperature and it achieved the maximum of 1.2 × 104 (40 Hz, 0 °C) at 1425 °C. With excessive increasing of sintering temperature, the relative dielectric constant decreased and the microstructure of the ceramic bulk became porous. In the spectra of imaginary part of the complex modulus, a peak was exhibited and the peak’s position shifted to high frequency with increasing testing or sintering temperature. The activation energy related to the peak was about 0.4 eV and this value was thought to be associated with the oxygen vacancies. Based on the sintering effect, the mechanism of oxygen vacancies in SnO2–Zn2SnO4 composite ceramics was proposed and accordingly, the varistor and giant permittivity properties are well understood based on the grain boundary barrier model.  相似文献   

13.
An interesting observation is reported on the dramatic effect of HNO3 on crystalline phase evolution in the 33.3 mol% Li2O–SiO2 glass–ceramic (stoichiometric composition of lithium disilicate Li2Si2O5, LS2) prepared by sol–gel processes from tetraethylorthosilicate (TEOS) and lithium ethoxide precursors. Nitric acid (65%), in molar ratio HNO3/TEOS = 0.1, was added either to the precursor sol or to 95 °C dried gel. The product, which is amorphous at temperatures below 450 °C, transforms into crystalline lithium metasilicate (Li2SiO3, LS) at around 550 °C (starting temperature ∼450 °C), instead of forming crystalline LS2. Phase separation in the glassy phase may be responsible for the formation of lithium metasilicate. XRD, 29Si MAS, and 7Li static NMR were used to follow the crystallization evolution and network structures of the materials heat-treated at various temperatures.  相似文献   

14.
In this study, NaNO3, Bi(NO3)3·5H2O, Ba(NO3)2, Ti(OC4H9)4 and citric acid were successfully introduced to fabricate lead-free piezoelectric (Na0.5Bi0.5)0.94Ba0.06TiO3 [NBBT] nanopartical powders by a novel modified sol–gel auto-combustion method. The resultant products were characterized by the X-ray diffraction analysis and transmission electron microscope method. (Na0.5Bi0.5)0.94Ba0.06TiO3 + Mn(NO3)2 [NBBTM] can be sintered by the traditional solid-state reaction, and the effects of NBBT doped different amounts of Mn(NO3)2 at various sintering temperatures upon phase formation, microstructure as well as piezoelectric properties were further studied. The experimental results show that it was helpful to control their chemical ingredients and microstructure to prepare nanocrystalline single phase NBBT powders. Where is the X-ray diffraction result of the corresponding ceramics to prove the existence of the mixing between rhombohedral and tetragonal phases at the MPB compositions. Doping 0.015 mol% Mn(NO3)2 into NBBT at 1,090 °C, piezoelectric constant (d 33) and relative dielectric constant (εr) reach the superior value of 159pC/N and 1,304, respectively, and dielectric loss (tan δ) and electromechanical coupling factor (K t) are 2.5% and 65%, respectively.  相似文献   

15.
In this study, we have studied the effect of repeated annealing temperatures on TiO2 thin films prepared by dip-coating sol–gel method onto the glasses and silicon substrates. The TiO2 thin films coated samples were repeatedly annealed in the air at temperatures 100, 200, and 300 °C for 5 min period. The dipping processes were repeated 5 to 10 times in order to increase the thickness of the films and then the TiO2 thin films were annealed at a fixed temperature of 500 °C for 1 h period. The effect of repeated annealing temperature on the TiO2 thin films prepared on glass substrate were investigated by means of UV–VIS spectroscopy, X-ray diffraction (XRD), and atomic force microscopy (AFM). It was observed that the thickness, average crystallite size, and average grain size of TiO2 samples decreased with increasing pre-heating temperature. On the other hand, thickness, average crystallite size, and average grain size of TiO2 films were increased with increasing number of the layer. Al/TiO2/p-Si metal–insulator–semiconductor (MIS) structures were obtained from the films prepared on p-type single silicon wafer substrate. Capacitance–voltage (CV) and conductance–voltage (G/ω–V) measurements of the prepared MIS structures were conducted at room temperature. Series resistance (R s) and oxide capacitance (C ox) of each structures were determined by means of the CV curves.  相似文献   

16.
17.
The aim of this research work is to represent the comparative study of ZnO/TiO2/ZnO (ZTZ) and TiO2/ZnO/TiO2 (TZT) thin films deposited by sol–gel dip coating on FTO substrates. After deposition, the films were annealed at 500 °C for 1 h. Structural, surface morphology, optical and electrical properties of these films were studied by X-ray diffractrometer (XRD), Raman spectra, atomic force microscope (AFM), photoluminescence spectra (PL) and four point probe technique respectively. XRD and Raman spectra confirmed the anatase, brookite phases of TiO2 and cubic phase of ZnO. AFM confirmed the formation of nano particles with average sizes of 18.4 and 47.2 nm of TZT and ZTZ films respectively. According to PL spectra, both the multilayer films slowdown the electron hole recombination rate and enhances the optoelectronic properties of the materials. Also it showed the peaks in the visible region of spectrum. The four point probe results showed that the average sheet resistivity of the films is 450 and 120 (ohm-m) respectively.  相似文献   

18.
In this paper, La0.8K0.2MnO3 powder was synthesized by sol–gel method. The phase structure, morphology of the composite have been characterized by X-ray diffraction, field emission scanning electron microscope. Testing of the microwave absorption was carried out by using the network analyzer Agilent HP-8722ES at room temperature. The results show that the La0.8K0.2MnO3 powder has excellent absorbing property. The maximum reflection loss is ?33.51 dB at about 12.22 GHz with a thickness of only 1.25 mm. Moreover, the bandwidth with the reflection loss above 10 dB reaches about 2.1 GHz.  相似文献   

19.
In present work for the first time we report the synthesis and characterization of pure CdO and Cd0.98Al0.02O films by innovative sol–gel screen-printing technique. The prepared films were characterized for their structural, morphological, optical and electrical properties. XRD studies reveals the polycrystalline nature of the films, exhibiting cubic structure with preferred orientation of grains along (111) plane. SEM image of CdO and Cd0.98Al0.02O indicates that surface of the films were uniformly covered and have smooth surface area on the entire film. EDAX analysis confirms the presence of Cd, O, Al along with some impurities as films were prepared on glass substrate. A UV–Visible spectroscopy confirms the direct band gap of 2.53 eV for CdO and 2.51 eV for Cd0.98Al0.02O films. The refractive index for the Cd0.98Al0.02O films firstly increases and then decreases with photon energy. The emission features of pure CdO and Cd0.98Al0.02O films were studied through PL spectra. Semiconducting nature of films was confirmed by the DC electrical conductivity measurement via standard two-probe method.  相似文献   

20.
The aim of this study was to investigate the effects of the rare earth element neodymium on the phase formation and microstructural development of relaxor ferroelectric lead magnesium niobate, Pb(Mg1/3Nb2/3)O3 (PMN) system. Perovskite phase PMN powders were prepared using the sol–gel method and the effect of neodymium doping was investigated at different doping levels ranging from 0.1 mol% to 30 mol%. The precursors employed in the sol–gel process were lead (II) acetate, magnesium ethoxide, and niobium (V) ethoxide. All the experiments were performed at room temperature while the calcination temperatures ranged between 800 °C and 1,100 °C. Results showed that it was possible to obtain the pure perovskite phase at 950 °C using the sol–gel method. Nd+3 addition influenced the phase formation and microstructure of the multicomponent system. Pyrochlore was detected along with the perovskite phase above 10 mol% Nd. Results also demonstrated that grain size of the synthesized powders depended on the Nd+3 concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号