首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
《可再生能源》2013,(8):28-32
文章提出了基于三单相结构动态电压恢复器(DVR)的风力发电低电压穿越(LVRT)方案。当电网电压发生跌落时,通过串联接入DVR来产生补偿电压,从而维持风电机组定子端电压的恒定。该方案是风力发电与电能质量的有效结合,充分利用了DVR在较短的时间内较强的电压补偿能力。仿真结果表明,该方案有效地抑制了转子侧暂态电流的蹿升,并及时将电网电压恢复到额定值,表现出了良好的低电压穿越能力。  相似文献   

2.
电压暂降检测算法的性能直接影响动态电压恢复器(DVR)的电压补偿效果,但传统电压暂降检测算法难以同时兼顾快速性和准确性,针对该问题,提出一种改进混合式电压暂降检测方法,采用该方法,DVR能够在2 ms内快速检测并补偿电压暂降.首先介绍了改进混合式电压暂降检测的工作原理,在此基础上介绍了结合改进时域法和dq变换法的混合式...  相似文献   

3.
关俊忠  石国萍  谷鹏 《节能》2004,(5):26-28
本文提出了一种新型的动态电压恢复器的主电路设计方案 ,该方案经过分析论证可达到电力系统对电能质量的补偿要求 ,且该装置具有一定的精确性和经济性  相似文献   

4.
为了分析DVR对配电系统的影响,介绍了DVR的原理、结构,论述了DVR在配电系统的作用,接着针对DVR对微机电流保护中的影响做了仿真.仿真分析表明:DVR的接入使得配电系统电流保护的灵敏度提高,但使电流保护失去了选择性.针对这一问题,提出了解决方案,仿真结果验证了方案的正确性.  相似文献   

5.
针对2 MW的双馈式风电机组(DFIG)的电网故障问题,提出了蓄电池与超级电容器混合储能的动态电压恢复器(DVR),以提高DFIG的故障穿越能力。在电网电压故障时,可对机组端口电压进行完全补偿,使风电机组的定子电压、转子电流和直流侧电压维持在正常水平。在Matlab/Simulink环境中建立DFIG-DVR系统仿真模型,进行了对称和不对称故障下的低电压穿越和对称故障下的高电压穿越仿真,仿真结果表明混合储能DVR可有效提升风电机组的故障穿越能力。  相似文献   

6.
动态电压恢复器(dynamic voltage restorer, DVR)是设备侧有效治理电压暂降故障的装置,目前DVR的控制设计基本采用比例积分(proportional-integral, PI)控制器,但是DVR为非线性系统,传统PI控制器并不能达到理想的控制效果。为改善DVR的控制效果,提出一种新型电压电流双闭环分数阶PI(fractional order PI,FOPI)控制策略。首先,以光伏-储能系统为DVR直流侧能量源,并建立相应的三相逆变器前馈解耦数学模型;其次,设计光伏-储能系统与逆变器的双闭环PI控制策略,并进行参数整定;之后,将整数阶控制策略推广到分数阶来改善控制效果,并采用增益变化时的鲁棒性准则对FOPI控制器进行参数校正;最后,搭建不同控制策略下的DVR仿真模型,仿真结果验证了FOPI控制器应用于DVR系统的可行性,且相对于传统PI控制器其具备更好的动态响应速度与抗干扰性能。  相似文献   

7.
针对750 kV自耦变压器接入电力网后输出端三相电压不平衡的问题,在研究计算单相自耦变压器各绕组间及绕组对地电容的基础上,将计算结果代入对应的给定单相补偿电容表达式,得到含有不平衡系数的补偿电容值;给定不平衡系数的初值和定迭代步长,进行迭代计算;计算收敛判据,决定是否继续迭代,若满足收敛要求则停止迭代,确定补偿相别以及相应的补偿电容值。实例分析结果表明,所提出的新型补偿法能够快速确定出解决自耦变压器低压绕组对地电压不平衡的单相电容补偿方案和补偿电容值,极大提高了现场解决电压不平衡的速度和可靠性,具有广泛的实用性。  相似文献   

8.
冶金企业供电系统电压波动的动态补偿   总被引:3,自引:0,他引:3  
花辉 《工业加热》1996,(6):29-32
介绍了冶金企业中炼钢电弧炉用静止式电压波动动态补偿装置的方案选择,工作原理,线路结构及这站偿容量的计算方法,给出了计算实例。  相似文献   

9.
考虑大规模海上风电并网后的电压稳定性问题,以电力系统网络等值为基础,计算系统的电压稳定指标,基于各可调节节点对危险节点的灵敏度指标给出电压无功补偿策略。该控制策略的制定分成3个步骤:首先,根据电压稳定指标辨识危险节点;其次,计算可调节节点对危险节点电压稳定性的灵敏度,并以此甄别进行补偿的电源节点;最后,根据各节点的灵敏度指标分配各节点无功补偿量。在IEEE-14节点算例下的仿真结果表明,所提补偿策略能够有效改善海上风电接入后的局部电网电压稳定性。  相似文献   

10.
王鹏 《节能技术》1998,(3):6-8,10
本文对低压动态无功补偿装置的可控硅触发电路进行了改进,以集成芯片取代了由分立元件组成的同步、功放及脉冲变压器等环节,使触发电路的结构大为简化,提高了装置的可靠性,降低了成本,为新一代低压置的推广应用奠定了基础。  相似文献   

11.
针对负荷电压正常运行时,级联动态电压补偿器(IDVR)被旁路的问题,提出在负荷正常运行时,利用IDVR提供感性无功,充分提高设备利用率,以有效降低上级电网传输的无功,减少线路损耗。即利用IDVR进行线间功率交换,通过控制各线路的功率因数降低线路无功传输的总和,并提出了适用于IDVR无功补偿技术的控制策略。应用Matlab/Simulink仿真和试验表明,该理论正确,所提控制策略可行。  相似文献   

12.
由于电弧炉在运行过程中的功率因数低,无功功率波动急剧,负载变化大,产生大量的高次谐波电流,电压畸变,对电网产生不利影响,严重影响电能质量,造成大量的能量消耗,同时影响工业产量和质量。通过对电弧炉运行时的电气特性进行分析,采用TCR_TSC型SVC协调控制的补偿方法对无功进行补偿,滤除谐波。MATLAB/ Simulink仿真结果表明该装置滤波效果良好。  相似文献   

13.
基于逆变调压型双向动态无功补偿装置研究   总被引:2,自引:0,他引:2  
提出了一种新型动态无功补偿装置,能以较小的逆变容量来实现系统的动态无功补偿,达到提高系统功率因数和电压稳定性的目的.装置以低压系统母线的电压和流过的无功为控制对象,通过控制逆变器的输出电压调节补偿电容器或电抗器两侧的电压,从而动态调节它们吸收或发出的无功的新型SVC.通过与固定补偿的结合,它能以很小的逆变器容量实现较大范围的双向动态无功补偿,降低了装置成本.利用PSCAD/EMTDC仿真平台对该补偿方式进行建模仿真,结果验证了该补偿策略的可行性和有效性.  相似文献   

14.
郭大鹏 《工业加热》2012,41(2):72-73
介绍了矿热炉的节能原理以及三种无功补偿方式的优缺点,重点阐述低压并联电容补偿系统在实际中的应用。以某电石厂的一台矿热炉为例说明低压无功补偿在矿热炉生产使用中需要注意的问题。  相似文献   

15.
本文针对煤矿牵引电车供电系统的特点,提出了一种利用混合补偿器进行牵引电车配电所无功和谐波综合补偿的方案。介绍了牵引电车配电所无功动态并联综合补偿装置的基本构成、装置的调试、运行情况,以及滤波器组、吸流电抗器组的过零投切波形以及补偿效果。分析了该可调无功补偿装置的工作原理,讨论了谐波及无功电流检测方法与混合补偿器的控制策略。  相似文献   

16.
针对目前风电场单独采用静止无功补偿器(SVC)或静止无功发生器(SVG)的缺陷,设计了一个由大容量SVC和小容量SVG组成的联合动态无功补偿系统。首先,阐述了联合动态无功补偿系统的结构;其次,对本文采用的无功协调控制策略进行了分析;最后,结合实际风电场参数,对联合动态无功补偿系统进行了仿真实验分析。实验结果验证了联合动态无功补偿系统补偿的有效性和合理性。  相似文献   

17.
在分析有效值算法、瞬时dq变换法和αβ变换法3种电压暂降检测算法基本原理的基础上,应用Matlab/Simulink软件仿真平台,建立了配电网电压暂降的检测模型。针对电压暂降时有无相位跳变以及配电网含谐波源等情况,对3种检测算法的检测性能进行了仿真比较。仿真结果表明:3种检测算法都能检测电压暂降后基波有效值的大小。其中,αβ变换法具有检测响应速度快,检测精度高等特点,而瞬时dq变换法则具有更好的配电网谐波抗干扰能力。  相似文献   

18.
针对大规模风电并网后系统的暂态电压稳定性问题,阐述了暂态电压失稳的机理以及暂态电压稳定性的分析计算方法,介绍了2种重要的无功补偿装置SVC和STATCOM。采用BPA软件对国内某一实际电网进行了仿真分析,结果表明,风速变化和系统发生短路故障均会对系统的暂态电压稳定性造成影响,导致系统的电压水平降低。装设SVC或STATCOM对系统电压均有支撑作用,且STATCOM对电压的支撑作用更加明显。  相似文献   

19.
针对地铁电力系统稳定性要求高的需求,提出一种基于改进SVG的无功补偿装置,其主要由信号处理模块、处理采集单元、变流器以及三相电压输出端组成。在补偿过程中,由电网采集得到的电压信号从信号处理模块通过,信号处理模块中对应设置了自适应形态学滤波器对电流、电压信号进行滤波调理,去除冲击干扰,并获取SVG相位补偿的控制触发信号,进而实现对于变流器的电压补偿和无功功率调节。实验测试了5种不同类型的待无功补偿电能畸变信号,其结果表明,对于不同程度的电能畸变信号,所述装置能够进行有效的无功补偿,使得电压信号的整体畸变程度被控制在0.5%以下,从而使负载性能得到保障。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号