首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
W. Shi  X. Y. Li  H. Dong   《Wear》2001,250(1-12):544-552
Surface modification of ultra-high molecular weight polyethylene (UHMWPE) has been explored using the novel non-line-of-slight plasma immersion ion implantation (PIII) with nitrogen. The modified surfaces were characterised by SEM and a Nano Test 600 testing machine. The tribological behaviour of PIII treated UHMWPE sliding against AISI 316L stainless steel counterfaces was evaluated using a pin-on-disc tribometer under water lubricated conditions. The experimental results show that PIII is a very promising surface engineering technique to improve such surface mechanical properties as surface hardness and elastic modulus of UHMWPE. As a result, the wear resistance of UHMWPE was significantly enhanced by a factor of three following PIII treatment, as compared with untreated material. It was found that the significantly improved wear resistance of PIII treated UHMWPE can be mainly attributed to ion bombardment induced cross-linking, and thus surface hardening.  相似文献   

2.
A loading protocol approximating forces, torques and motions at the knee during stair descent was developed from previously published data for input into a force-controlled knee simulator. A set of total knee replacements (TKRs) was subjected to standard walking cycles and stair descent cycles at a ratio of 70: 1 for 5 million cycles. Another set of implants with similar articular geometry and the same ultra-high molecular weight polyethylene (UHMWPE) resin (GUR 415), sterilization and packaging was tested with standard walking cycles only. Implant kinematics, gravimetric wear and surface roughness of the UHMWPE inserts were analysed for both sets of implants. Contact stresses were calculated for both loading protocols using a Hertzian line contact model. Significantly greater weight loss (p < 0.05) and more severe surface damage of UHMWPE inserts resulted with the walking + stair descent loading protocol compared to walking cycles only. Anterior-posterior (AP) tibiofemoral contact point displacements were lower during stair descent than walking, but not significantly different (p = 0.05). Contact stresses were significantly higher during stair descent than walking, owing to higher axial loads and the smaller radius of curvature of the femoral components at higher flexion angles. High contact stresses on UHMWPE components are likely to accelerate the fatigue of the material, resulting in more severe wear, similar to what is observed in retrieved implants. Thus the inclusion of loading protocols for activities of daily living in addition to walking is warranted for more realistic in vitro testing of TKRs.  相似文献   

3.
Ultra-high molecular weight polyethylene (UHMWPE) is a common bearing component in total knee replacement (TKR) implants, and its susceptibility to wear continues to be the long-term limiting factor in the life of these implants. This study hypothesized that in TKR systems, a highly cross-linked (HXL) UHMWPE blended with vitamin E will result in reduced wear as compared to a direct compression-moulded (DCM) UHMWPE. A wear simulation study was conducted using an asymmetric lateral pivoting '3D Knee' design to compare the two inserts. The highly cross-linked UHMWPE was aged prior to the testing and force-controlled wear testing was carried out for 5 million cycles using a load-controlled ISO-14243 standard at a frequency of 1 Hz on both groups. Gravimetric measurements of DCM UHMWPE (4.4 +/- 3.0 mg/million cycles) and HXL UHMWPE with vitamin E (1.9 +/- 1.9 mg/million cycles) showed significant statistical differences (p < 0.01) between the wear rates. Wear modes and surface roughness for both groups revealed no significant dissimilarities.  相似文献   

4.
In this study, osteoarthritic and periprosthetic synovial fluid samples were rheologically and biochemically compared to develop a hyaluronic acid (HA) supplemented bovine serum (BS) lubricant that mimicked the properties of human joint synovial fluid. The effect of this BS + HA lubricant (50 per cent bovine calf serum + 1.5 g/l HA) on the wear rate of ultra-high molecular weight polyethylene (UHMWPE) during a total knee replacement wear test was then investigated. In conjunction with biochemical similarities, the rheological analysis showed that the BS + HA lubricant viscosity was not statistically different to aspirated total knee arthroplasty (TKA) revision joint fluid viscosity over a range of physiologic shear rates. Gravimetric results at 5 million wear testing cycles showed that the BS + HA lubricant produced an average of 6.88 times more UHMWPE wear than 50 per cent bovine serum lubricant alone. The BS + HA lubricated CoCr femoral component surfaces revealed pitting and surface roughening that was not observed using standard bovine serum only lubricants, but that was similar to the metallic surface corrosion observed on in vivo CoCr femoral component retrievals. These findings support the hypothesis that the addition of HA to simulator lubricant is capable of producing CoCr femoral component surface damage similar to that observed in vivo.  相似文献   

5.
Elastohydrodynamic lubrication was analysed under squeeze-film or normal approach motion for artificial hip joint replacements consisting of an ultra-high molecular weight polyethylene (UHMWPE) acetabular cup and a metallic or ceramic femoral head. A simple ball-in-socket configuration was adopted to represent the hip prosthesis for the lubrication analysis. Both the Reynolds equation and the elasticity equations were solved simultaneously for the lubricant film thickness and hydrodynamic pressure distribution as a function of the squeeze-film time was solved using the Newton-Raphson method. The elastic deformation of the UHMWPE cup was calculated by both the finite element method and a simple equation based upon the constrained column model. Good agreement of the predicted film thickness and pressure distribution was found between these two methods. A simple analytical method based upon the Grubin-Ertel-type approximation developed by Higginson in 1978 [1] was also applied to the present squeeze-film lubrication problem. The predicted squeeze-film thickness from this simple method was found to be remarkably close to that from the full numerical solution. The main design parameters were the femoral head radius, the radial clearance between the femoral head and the acetabular cup, and the thickness and elastic modulus for the UHMWPE cup; the effects of these parameters on the squeeze-film thickness generated in current hip prostheses were investigated.  相似文献   

6.
One of the important design parameters in current knee joint replacements is the thickness of the ultra-high molecular weight polyethylene (UHMWPE) tibial insert, yet there is no clear definition of the upper limit of the 'thick' polyethylene insert. Using one design knee implant and subjecting it to the physiological loads encountered throughout the gait cycle, measurements of the lengths of contact imprints generated were compared with the corresponding theoretical predictions for different insert thicknesses under the same applied load. Multiple regression analysis was applied to test whether the dimensions of contact imprints are influenced by UHMWPE thickness. Good agreement was obtained between the theoretical predictions and the experimental measurements of the dimensions of contact imprints when the knee was at 60 degrees flexion. Therefore, it was possible to estimate the contact pressure at the articulating surface using the theoretical model. Contact imprint dimensions increased with increasing applied load. Statistical analysis of the experimental data revealed that, at 0 degree flexion, the overall imprint dimensions increased as the UHMWPE thickness increased from 8 to 20 mm. However, the increment was not significant when the thickness subinterval 10-15 mm was considered. Furthermore, at 60 degrees flexion, thickness was not a significant factor for the overall imprint dimensions. No evidence was found from the data to suggest that an increment in polyethylene thickness over 10 mm would significantly reduce the contact imprint dimensions. These findings suggest that thicker inserts can be avoided, as they require unnecessary bone resection.  相似文献   

7.
Computational wear models need input data from valid tribological tests. For the wear model of a total hip prosthesis, the contact pressure dependence of wear and friction of ultra-high molecular weight polyethylene (UHMWPE) against polished CoCr in diluted calf serum lubricant was studied, and useful input data produced. Two test devices were designed and built: a heavy load circularly translating pin-on-disc (HL-CTPOD) wear test device and an HL-CTPOD friction measurement device. Both can be used with a wide range of loads. The wear surface diameter of the test pin was kept constant at 9 mm, whereas the load was varied so that the nominal contact pressure ranged from 0.1 to 20 MPa. The wear factor decreased with increasing contact pressure, whereas the coefficient of friction first increased with increasing contact pressure with low pressure values and then decreased. Up to the pressure of 2.0 MPa, the wear mechanisms and wear factors were in good agreement with clinical findings. In the critical range of 2.0-3.5 MPa, the wear mechanisms and wear factors started to differ from clinical ones, and the decrease of the wear factor steepened. The discrepancy became more and more evident as the pressure was gradually increased beyond 3.5 MPa. It appears that the pressure value of 2.0 MPa should not be exceeded in pin-on-disc wear tests that are to reproduce the clinical wear of UHMWPE acetabular cups.  相似文献   

8.
This paper studies the effect of contact stress on friction and wear of ultra-high molecular weight polyethylene (UHMWPE) acetabular cups by means of friction and wear joint simulator testing under serum lubrication. For a given applied load, increasing the contact stress by increasing the ball/socket radial clearance decreased both the coefficient of friction and the wear rate. Friction and wear were highly correlated. The dependence of friction on contact stress for the UHMWPE socket under serum lubrication was similar to that of semi-crystalline polymers under dry sliding. This finding indicates the occurrence of partial dry contact at asperity levels for the metal-polyethylene ball-in-socket joint under serum lubrication.  相似文献   

9.
Ultrahigh molecular weight polyethylene (UHMWPE) fatigue is a critical factor affecting the longevity of total knee replacement (TKR) bearings. With the increased need for laboratory studies to mimic near in vivo conditions for accurate characterization of material performance, the present study investigated the role of hyaluronic acid (HA) in testing lubricant on the crack growth response of UHMWPE. It was hypothesized that the change in lubricant viscosity as a result of HA would affect the fatigue life of the polymer. A fracture mechanics approach as per ASTM E 647 was adopted for this study. Surface micrograph and surface chemistry analyses were employed to study the micromechanisms of fatigue failure and protein adsorption of the specimen surfaces. Rheological analysis indicated that the addition of HA to diluted bovine serum increased testing lubricant viscosity. HA concentrations of 2.22, 0.55, and 1.5 g/l closely matched the viscosity ranges reported for osteoarthritis, rheumatoid arthritic diseased joint fluid, and periprosthetic fluids respectively. Results showed that the addition of HA to standard diluted bovine serum lubricants, in concentrations similar to that of periprosthetic fluid, delayed crack initiation and crack growth during fatigue testing.  相似文献   

10.
Since the implication of polyethylene wear debris as a major cause of osteolysis in total joint replacements, there has been much interest in polyethylene wear studies and in cell culture studies using ultra-high molecular weight polyethylene (UHMWPE) wear debris. Studies have shown that particles in the 0.1-10 microns size range are particularly important in causing adverse cellular reactions resulting in osteolysis. The morphology, the mass and size distributions, and the number of wear particles produced at the joint surfaces are influenced by the tribological conditions at the joint. Laboratory wear tests are used to investigate the wear properties of prosthetic joint materials and different research groups have used different lubricants in these tests. This paper shows that the volumetric wear and morphology of UHMWPE particles generated in vitro are influenced by the type of lubricant used. This study compared, quantitatively, UHMWPE wear debris generated in deionized water to debris that was generated in a system lubricated by bovine serum which was diluted to 25 per cent. The wear factors of UHMWPE in water and serum lubricants were significantly different (p < 0.05). UHMWPE wore 14 times more in water than in serum. Quantitative analysis of the wear particles showed that the debris that was generated in serum was morphologically different from debris that was produced in a water-lubricated system. Furthermore, the particles produced in serum showed a closer similarity to those found in retrieved acetabular tissues.  相似文献   

11.
Ultra-high molecular weight polyethylene (UHMWPE) wear debris induced osteolysis has a major role in the late aseptic loosening and ultimate failure of total hip replacements (THR). Clinically relevant in vitro simulations of wear are essential to predict the osteolytic potential of bearing surfaces in artificial hip joints. Newborn calf or bovine serum has been accepted as a boundary lubricant for such in vitro tests, but its biological stability has been questioned. This study compared the wear factors, number of wear particles and levels of microbial contamination produced in bovine serum and a gelatin-based lubricant. The wear factors produced by the two lubricants were not significantly different, however the wear debris morphology produced was substantially different. The bovine serum became contaminated with micro-organisms within 28 h, whereas the protein-based lubricant remained uncontaminated. The results showed that bovine serum was not a stable boundary lubricant. They also showed that although the wear factors for the two solutions were not significantly different, the protein-based lubricant was not a suitable alternative to bovine serum because the wear debris produced was not clinically relevant.  相似文献   

12.
Wear of total knee replacements is determined gravimetrically in simulator studies. A mix of bovine serum, distilled water, and additives is intended to replicate the lubrication conditions in vivo. Weight gain due to fluid absorption during testing is corrected using a load soak station. In this study, three sets of ultrahigh molecular weight polyethylene tibial plateau were tested against highly polished titanium condyles. Test 1 was performed in two different institutions on the same simulator according to the standard ISO 14243-1, using two testing lubricants. Test 2 and test 3 repeated both previous test sections. The wear and load soak rates changed significantly with the lubricant. The wear rate decreased from 16.9 to 7.9 mg weight loss per million cycles when switching from fluid A to fluid B. The weight gain of the load soak specimen submersed in fluid A was 6.1 mg after 5 x 10(6) cycles, compared with 31.6 mg for the implant in fluid B after the same time period. Both lubricants were mixed in accordance with ISO 14243 (Implants for surgery - wear of total knee-joint prostheses), suggesting that calf serum should be diluted to 25 +/- 2 per cent with deionized water and a protein mass concentration of not less than 17 g/l. The main differences were the type and amount of additives that chemically stabilize the lubricant throughout the test. The results suggest that wear rates can only be compared if exactly the same testing conditions are applied. An agreement on detailed lubricant specifications is desirable.  相似文献   

13.
There is considerable interest in the wear of polyethylene and the resulting wear-debris-induced osteolysis in artificial hip joints. Proteins play an important role as boundary lubricants in vivo in the pseudosynovial fluid, and these are reproduced in in vitro tests through the use of bovine serum. Little is known, however, about the effect of phospholipid concentrations within proteinaceous solutions on the wear of ultra-high molecular weight polyethylene (UHMWPE). The effects of protein-containing lubricants with 0.05, 0.5 and 5 per cent (w/v) phosphatidyl choline concentrations on the wear of ultra-high molecular weight polyethylene (UHMWPE) were compared with 25 per cent (v/v) bovine serum which had 0.01 per cent (w/v) lipid; the effects were compared in a hip joint simulator with smooth (n = 4) and scratched (n = 3) femoral heads. The control bovine serum lubricant produced UHWMPE wear of 55 and 115 mm3/10(6) cycles on the smooth and rough heads respectively. The increased phospholipid concentration significantly reduced the wear rate. At the higher concentration (5% w/v phosphatidyl choline) the average wear was reduced to less than 2 mm3/10(6) cycles. Even with the relatively low concentrations of 0.05% w/v phosphatidyl choline the wear was reduced by at least threefold compared with the bovine serum tests for both the smooth and rough femoral heads. There may be considerable differences in the phospholipid concentrations in patients' synovial fluid and this is highly likely to produce considerable variation in wear rates. In vitro, differences in the phospholipid concentration of lubricants may also cause variation in wear rates between different simulator tests.  相似文献   

14.
It is known that wear mechanisms differ between the ultra-high molecular weight polyethylene (UHMWPE) components of total hip replacement (THR) and total knee replacement (TKR). The difference in relative contact position or 'kinematic conditions of contact' between the metal and polymer components is thought to contribute to the contrast in observed wear mechanisms. A reciprocating wear tester was used to evaluate three basic kinematic contact conditions: sliding, in which the relative contact position on the polymer remains stationary; gliding, where the contact position on the polymer reciprocates; and rolling, where the contact position on the polymer varies and the relative velocities of both components are equal. All static load tests used cast Co-Cr alloy and irradiated Chirulen UHMWPE in a 37 degrees C environment lubricated with bovine serum albumin. UHMWPE test sample wear was measured gravimetrically at intervals of 600,000 cycles. The results indicated a difference in wear factor (volume lost due to wear per unit load per unit sliding distance) between the three groups with varying relative motion. The study indicates that screening tests which evaluate wear properties of new materials for total joint replacement should reflect the different kinematic contact conditions.  相似文献   

15.
The effect of radiation dose on the depth-dependent oxidation and wear of shelf-aged gamma-irradiated UHMWPE was investigated in this paper. FTIR, micro-indentation, pin-on-plate wear tests and SEM imaging were carried out at three representative regions (surface, subsurface and center) for each sample. The experimental results show that when the oxidation index (OI) <1, the wear rate is clearly affected by the radiation dose (crosslinking density). When 1<OI<3, the wear rates are mainly controlled by the OI. When OI>3 – except for the 1000 kGy specimen – the wear resistance is severely deteriorated and the relationship with the radiation dose is difficult to predict. Results suggest that higher irradiation (above 200 kGy) is capable of lowering the oxidative degradation of UHMWPE.  相似文献   

16.
The study was initiated to assess the suitability of Ti-6Al-4V as a metal which articulates against Ultra High Molecular Weight (UHMW) polyethylene in total joint applications. The wear surfaces of Ti alloy were prepared to different levels of surface roughness and the effect of various surface chemical treatments were examined. A specially designed annular contact laboratory wear tester was developed to provide the surface loading and articulation. Comparative tests were also performed using 316 LVM stainless steel and Co-Cr-Mo alloy metallic wear components. All annular contact wear tests were performed in mammalian Ringer's solution environments and were evaluated using standard statistical techniques. Scanning electron microscope (SEM) analysis of the wear surfaces indicates the formation of a polyethylene transfer film on all metal surfaces. The surface of the UHMW polyethylene samples after testing was considerably rougher than the original articulating metallic surface; the transfer film on the metal surfaces was responsible for this. It was concluded that Ti-6Al-4V is satisfactory for total joint replacement when used in combination with UHMW polyethylene. Proper surface preparation may allow lower rates of wear than conventional orthopaedic alloys.  相似文献   

17.
To improve wear properties of artificial joints, cross-linked ultra-high molecular weight polyethylene (UHMWPE) was crystallized under compression in a molten state. Slight cross-linking was created by γ-ray irradiation at a 0.5 Mrad dose under reduced pressure at room temperature before the compression. Next, the UHMWPE was melted at 200°C and compressed using two metal plates. The compression ratio (CR) is defined as the ratio of the final thickness to the original thickness of the sample. The molecular chain of the UHMWPE was orientated to the direction of deformation and was crystallized by cooling to room temperature while maintaining the deformation. The (2 0 0) crystalline plane was only orientated parallel to the compression plane in the CR=2 sample; however, in the case of the CR=5 sample, both the (2 0 0) and the (1 1 0) crystalline planes were orientated parallel to the compressed surface. The density and melting point of the sample depended on the compression ratio. The physical and the mechanical properties were increased in accordance with their compression ratio. The c-peak of the loss modulus was shifted to a higher temperature compared with the non-compressed sample. Dimensional stability of the compressed sample by heating near 135°C was not found. It was confirmed that the wear factor also depended on the compression ratio based on the findings of pin-on-disc and pin-on-flat wear tests. The wear factor of the (CR=2) sample was similar to the non-compressed sample (CR=1); in contrast, that of the CR=5 sample was significantly smaller.  相似文献   

18.
Ultra-high molecular weight polyethylene (UHMWPE) provides a low friction, high toughness interface in artificial knees and hips. Micron-sized wear debris forms over time in these transplants leading to osteolysis and poor clinical outcomes. Using the atomic force microscope (AFM) as a model single asperity contact, tribological studies were performed on nanometer smooth samples of UHMWPE under dry conditions to elucidate the mechanisms of debris formation. Low loads produced no changes in friction or topography despite repeated scanning. Above a critical load, polymer accumulated at the perimeter of the scan and led to the formation of a wear debris particle. Plastically deformed material exhibited a surprisingly high friction compared to surrounding pristine areas, and may partially explain macroscale observations of adhesive wear. In contrast, the polymer in the interior of the scanned area exhibited a friction identical to pristine polymer. These data link strain-softening and delamination of the surface to the formation of wear debris.  相似文献   

19.
Studies of explanted hip prostheses have shown high wear rates of ultra-high molecular weight polyethylene (UHMWPE) acetabular cups and roughening of the surface of the metallic femoral head. Bone and bone cement particles have also been found in the articulating surfaces of some joints. It has been proposed that bone or bone cement particles may cause scratching and deterioration in the surface finish of metallic femoral heads, thus producing increased wear rates and excessive amounts of wear debris. Sliding wear tests of UHMWPE pins on stainless steel have been performed with particles of different types of bone and bone cement added. Damage to the stainless steel counterface and the motion of particles through the interface have been studied. Particles of bone cement with zirconium and barium sulphate additives and particles of cortical bone scratched the stainless steel counterface. The cement particles with zirconium additive produced significantly greater surface damage. The number of particles entering the contact and embedding in the UHMWPE pin was dependent on particle size and geometry, surface roughness and contact stress. Particles are likely to cause surface roughening and increased wear rates in artificial joints.  相似文献   

20.
Medical-grade UHMWPE samples with two different surface finishing treatments, milling and melting/reforming were exposed to 10% bovine serum albumin solution and their friction responses were quantified using atomic force microscopy. The observed friction increase upon exposure to proteins was attributed to the formation of a layer of denatured proteins on the surface. Changing the crystallinity and surface energy of UHMWPE affected the protein adsorption mechanism and the resulting increase in friction behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号