首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 518 毫秒
1.
The T cell antigen receptor (TCR).CD3 complex contains several distinct but related signal transduction modules termed "Reth motifs": one each in the cytoplasmic domains of CD3-gamma, -delta, and -epsilon chains and three in the CD3-zeta polypeptide (zeta A, zeta B, and zeta C). Cross-linking of individual motifs expressed in chimeric molecules leads to early and late T cell activation events. Although the activated T cell receptor associates with nonreceptor tyrosine kinases, the sites of interaction with kinases and other potential effector molecules have not been fully mapped. Here we show that phosphatidylinositol 3-kinase (PI 3-kinase) preferentially associated with the zeta chain membrane proximal motif zeta A. Maximal PI 3-kinase/zeta A association occurred following TCR.CD3 activation and was dependent upon phosphorylation of both tyrosine residues in zeta A. The association of PI 3-kinase was specific for zeta A and could be ranked zeta A > zeta C > zeta B. Phosphorylation of the zeta A motif on tyrosine residues occurred in response to TCR.CD3 cross-linking in vivo. These results indicate that T cell activation leads to assembly of an intracellular signaling complex: recruitment of a tyrosine kinase, phosphorylation of zeta A, and association of PI 3-kinase. These data also support a model in which different Reth motifs of the TCR.CD3 complex recruit distinct signal transduction molecules. Thus, the subdomains of the T cell antigen receptor zeta chain may serve different roles during T cell maturation and antigen-driven activation.  相似文献   

2.
Although both the CD4 and CD8 molecules enhance antigen responsiveness mediated by the T cell receptor (TCR), it is not known whether CD4 and CD8 initiate similar or different intracellular signals when they act as coreceptors. To characterize the early signals transmitted by CD4 and CD8, both CD4 and CD8 alpha were expressed in the same murine T cell hybridoma. In the double positive transfectants, CD4 and CD8 associated with equal amounts of p56lck (Lck), and both molecules enhanced interleukin 2 (IL-2) production equivalently when cross-linked with suboptimal levels of anti-TCR antibody. However, in an in vitro kinase assay, cross-linking CD4 initiated fourfold greater kinase activity compared with CD8 cross-linking. In the same assay, when CD4 or CD8 was cross-linked to the TCR, novel phosphorylated proteins were found associated with the TCR/CD4 complex but not with the TCR/CD8 complex. Consistent with this data, antiphosphotyrosine immunoblotting revealed greater tyrosine phosphorylation of intracellular substrates after TCR/CD4 cross-linking compared with TCR/CD8 cross-linking. Additionally, a specific protein kinase C inhibitor (RO318220) inhibited CD8-mediated enhancement of IL-2 production far more effectively than CD4-mediated enhancement. Thus, it appears that CD8 alpha may depend more on a protein kinase C-mediated signaling pathway, whereas CD4 may rely on greater tyrosine kinase activation. Such differential signaling via CD4 and CD8 has implications for thymic ontogeny and T cell activation.  相似文献   

3.
Ligation of the TCR or CD28 induces activation of phosphatidylinositol 3-kinase (PI3K), the TEC family protein tyrosine kinase, EMT/ITK/TSK (EMT), and the SRC family tyrosine kinase, LCK. LCK is required for the activation and phosphorylation of EMT induced by ligation of the TCR or CD28 placing LCK upstream of EMT in T cell signaling cascades. We report herein that inhibition of PI3K activity with the specific inhibitors LY294002 and wortmannin markedly decreased EMT activation induced by CD28 cross-linking but not by CD3 cross-linking. Further, inhibition of PI3K markedly decreased EMT in vitro autokinase activity induced by activated LCK. In contrast, PI3K inhibitors did not alter CD28 or CD3 cross-linking or LCK-induced EMT phosphorylation. Consistent with the requirement of PI3K activity for CD28 but not CD3-induced stimulation of the EMT in vitro autokinase activity, a small but significant portion of cellular EMT associates with PI3K following CD28 cross-linking but not following CD3 cross-linking. CD28-induced association of EMT with PI3K also requires functional expression of LCK. Fusion proteins containing the SRC homology 2 domain of EMT interact with PI3K or a PI3K-associated molecule in a tyrosine phosphorylation-dependent manner. Taken together, the data suggest that EMT is differentially regulated and recruited to different signaling complexes following ligation of CD28 or the TCR complex, perhaps contributing to the disparate roles that EMT appears to play downstream of CD28 and the TCR.  相似文献   

4.
Protein tyrosine kinase p59fyn is associated with the TCR-CD3 complex and is suggested to play a role in T cell activation. To determine the molecular mechanism of p59fyn-mediated signal transduction in T cell activation, we established murine T cell hybridoma lines that expressed an elevated amount of wild-type or mutant fyns. Clones that expressed high levels of normal p59fyn and active p59fyn, encoded by wild-type and f-14 mutant fyn respectively, showed enhanced IL-2 production upon stimulation by anti-CD3 antibodies or natural antigen. On the other hand, clones that expressed kinase negative p59fyn and p59fyn with an SH2 (Src-homology 2) deletion encoded by t-1 mutant fyn showed little induction of IL-2 production upon stimulation. These data suggest that p59fyn is important in T cell signaling and that the SH2 sequence plays a critical role in the reaction. Induction of tyrosine phosphorylation of multiple proteins upon antigenic stimulation was augmented similarly in the cells that respectively expressed wild-type and f-14 mutant fyns at elevated levels. The proteins that became highly tyrosine-phosphorylated included phospholipase C (PLC-gamma 1), p95vav, ZAP-70, the MAP kinase, CD3 zeta and unidentified proteins of 120, 100 and 80 kDa. Tyrosine phosphorylation of the 120, 95 and 68 kDa proteins associated with PLC-gamma 1 was also observed in these cells upon stimulation. In contrast, only the 100 kDa protein and the MAP kinase were increasingly tyrosine phosphorylated in the antigen-stimulated cells expressing t-1 fyn. These data suggest that PLC-gamma 1, PLC-gamma 1 associated molecules, p95vav, the 80 kDa protein, ZAP-70 and the CD3 zeta chain may be substrates of p59fyn or of other tyrosine kinases regulated by p59fyn and be important in T cell signaling.  相似文献   

5.
Protein tyrosine kinase p59fyn (Fyn) associates with the TCR-CD3 complex, which suggests that Fyn plays a significant role in the signal transduction involving TCR complex. In addition to cellular genes, viral promoters such as the HIV long terminal repeat (LTR) are also activated upon T cell activation. To elucidate the functional significance of Fyn in the expression of viral promoters, we transfected a Fyn-expression vector together with a reporter plasmid containing the chloramphenicol acetyltransferase gene driven by HIV LTR into a human T cell line, Jurkat. In this assay, Fyn stimulated the promoter in HIV LTR when the transfected cells were treated with both concanavalin A and PMA as an antigen-mimic stimulation. This activation required the intact SH2 domain of Fyn. Mutational analysis of HIV LTR showed that the NF kappa B binding sites were responsible for this effect. Electrophoretic mobility shift assays and UV cross-linking experiments showed that activation of T cells by anti-CD3 antibody induced four kappa B-binding proteins (50, 60, 65 and 100 kDa) in Fyn-overexpressing cells more efficiently than in the parental cells. Our results suggested that Fyn was able to regulate expression of a subset of genes via kappa B-binding proteins upon T cell activation.  相似文献   

6.
Cross-linking of the Fas-antigen (CD95, Apo-1) triggers apoptosis in activated T cells and transformed T cell lines. Fas-induced apoptosis has been previously reported to require Fas-triggered tyrosine phosphorylation of various proteins. In the present study, we have compared the protein tyrosine phosphorylation pattern and the apoptosis sensitivity in a set of Jurkat variants selected for the absence or presence of T cell receptor (TCR)/CD3 expression and resistance or sensitivity to Fas-mediated apoptosis. While tyrosine phosphorylation upon Fas-ligation was readily apparent in wild-type Jurkat cells (which are sensitive to anti-Fas-induced apoptosis), drastically reduced tyrosine phosphorylation was observed in Fas-resistant Jurkat subclones (which still express CD95 on their surface). More importantly, TCR/CD3-negative Jurkat variants which expressed normal levels of CD95 and were fully susceptible to Fas-triggered cell death, did not show any protein tyrosine phosphorylation upon Fas-ligation. Taken together, our data demonstrate that Fas-induced cell death can be associated with but is not dependent on protein tyrosine phosphorylation.  相似文献   

7.
In addition to being an iron transporter, the transferrin receptor (TfR) has been shown to play a role in T cell activation. Stimulation of the TfR with specific Abs results in T cell proliferation, IL-2 secretion, and protein kinase C activation. In this paper we have analyzed early events caused by activation of the TfR. We have found several protein substrates to be tyrosine phosphorylated upon TfR stimulation in the human Jurkat T cell line. Interestingly, the TfR induced tyrosine phosphorylation in cell lines expressing TCR but not in TCR-negative mutants. Restoration of the TCR surface expression in these mutants reestablished the ability of the TfR to induce tyrosine phosphorylation. This result suggests that activation through the TfR is functionally dependent upon the expression of the TCR. Moreover, the functional relationship of the TfR with the TCR complex is also supported by data showing that TfR stimulation resulted in the tyrosine phosphorylation of the TCR zeta-chain; conversely, stimulation of the TCR complex resulted in an increased tyrosine phosphorylation of the TfR. More importantly, the TfR is shown to associate physically with the TCR zeta-chain as well as with the zeta-binding ZAP70 tyrosine kinase. The TfR/zeta complex is expressed on the cell surface independent of the expression of the other subunits of the TCR complex. We suggest that the TfR/zeta complex is responsible for transducing the TfR-induced signals, and that it could serve to amplify signals delivered by Ag binding to the TCR.  相似文献   

8.
This study compares the biochemical responses in T cells activated with the CD28 ligands B7-1 and B7-2. The patterns of tyrosine phosphorylation induced in T cells by these two CD28 ligands are identical, but clearly different from the tyrosine phosphorylation induced by the T cell receptor (TCR). The TCR regulates protein complexes mediated by the adapter Grb2 both in vivo and in vitro. In contrast, there is no apparent regulation of in vivo Grb2 complexes in response to B7-1 or B7-2. Rather, B7-1 and B7-2 both induce tyrosine phosphorylation of a different adaptor protein, p62. The regulation of p62 is a unique CD28 response that is not shared with the TCR. These data indicate that B7-1 and B7-2 induce identical tyrosine kinase signal transduction pathways. The data show also that the TCR and CD28 couple to different adapter proteins, which could explain the divergence of TCR and CD28 signal transduction pathways during T cell activation.  相似文献   

9.
IAP is a glycoprotein functionally and physically associated with some integrins, i.e., the leukocyte response integrin and the beta3 integrin chain on placenta, platelets, and polymorphonuclear cells. IAP may act as a transducer element in activation mediated via these integrins. Since IAP is present at high density on peripheral T lymphocytes we have investigated its involvement in T cell activation. We tested three mAbs against IAP, namely B6H12, BRIC126, and 2D3, which recognize two distinct epitopes. IAP cross-linking with B6H12 or BRIC126, but not 2D3, transduces costimulatory signals within highly purified CD3-activated T lymphocytes, i.e., enhancement of proliferation, CD25 expression, and IL-2 secretion, while no effect was observed upon CD2 stimulation. However, we could not observe any functional association between IAP and integrins on peripheral T cells. In an attempt to explore further the activation signal delivered by IAP, we show here that IAP cross-linking with the comitogenic B6H12 mAb induces the phosphorylation on tyrosine of several proteins, one of which is identified as p56(lck) protein tyrosine kinase. Moreover, we observed that IAP is associated with p56(lck) on PMA-activated, but not on resting, T cells. These data suggest that on T cells, IAP may be involved directly via a specific ligand in cell-matrix or cell-cell interactions. Such interactions could trigger protein tyrosine phosphorylation pathways, which play an important role in both maturation and activation of T cells.  相似文献   

10.
Staphylococcus enterotoxin superantigens are potent T cell activators. To gain new insights into the mechanism of T cell activation induced by these superantigens, we investigated the recruitment of signaling molecules in this process. Here, we show that enterotoxin superantigen activation can be transmitted to TCR-CD3 complexes that did not interact with their ligand. Indeed, by studying cells expressing two distinct TCRs, we found that enterotoxin superantigens induced tyrosine phosphorylation of TCRzeta subunits, the recruitment and tyrosine phosphorylation of the protein tyrosine kinase ZAP-70, and an increase in protein tyrosine kinase activity of both directly stimulated and unstimulated TCR-CD3 complexes. As the involvement of unstimulated TCR-CD3 complexes in signal transduction would increase the number of signaling molecules and, therefore, the efficiency of T cell activation, these data provide a novel explanation for the ability of enterotoxin superantigens to potently activate T lymphocytes.  相似文献   

11.
Recognition of the antigen/MHC complex by the T cell receptor (TCR)-CD3 complex in T cells triggers early activation events such as tyrosine phosphorylation, phosphatidylinositol turnover, intracellular Ca2+ mobilization or activation of protein kinases, and finally exhibits effector functions such as lymphokine secretion by helper T cells or cytotoxicity by killer T cells as late activation events. Several key molecules have been shown to engage in these signaling cascades. In addition to the TCR-CD3 molecules, other surface molecules such as CD28 or LFA-1 contribute to the regulation of T cell activation as a co-stimulator. Growing knowledge about the downstream of antigen recognition is promoting the attempt to modulate the signal transduction by specific drugs, mAbs, altered peptides or cytokines. Further investigations on the molecular mechanism of T cell activation will provide clinical successes to control immune responses.  相似文献   

12.
Cytotoxic T lymphocyte-associated molecule-4 (CTLA-4) is a cell surface receptor expressed on activated T cells that can inhibit T cell responses induced by activation of the TCR and CD28. Studies with phosphorylated peptides based on the CTLA-4 intracellular domain have suggested that tyrosine phosphorylation of CTLA-4 may regulate its interactions with cytoplasmic proteins that could determine its intracellular trafficking and/or signal transduction. However, the kinase(s) that phosphorylate CTLA-4 remain uncharacterized. In this report, we show that CTLA-4 can associate with the Src kinases Fyn and Lck and that transfection of Fyn or Lck, but not the unrelated kinase ZAP70, can induce tyrosine phosphorylation of CTLA-4 on residues Y201 and Y218. A similar pattern of tyrosine phosphorylation was found in pervanadate-treated Jurkat T cells stably expressing CTLA-4. Phosphorylation of CTLA-4 Y201 in Jurkat cells correlated with cell surface accumulation of CTLA-4. CTLA-4 phosphorylation induced the association of CTLA-4 with the tyrosine phosphatase SHP-2, but not with phosphatidylinositol 3-kinase. In contrast, Lck-induced phosphorylation of CD28 resulted in the recruitment of phosphatidylinositol 3-kinase, but not SHP-2. These findings suggest that phosphorylation of CD28 and CTLA-4 by Lck activates distinct intracellular signaling pathways. The association of CTLA-4 with Src kinases and with SHP-2 results in the formation of a CTLA-4 complex with the potential to regulate T cell activation.  相似文献   

13.
p40 was previously described as a regulatory molecule capable of inhibiting both the natural and the CD16-mediated cytotoxicity of NK cells. In this study, we analyze the effect of p40 molecule engagement on the NK cell triggering induced by activating HLA class I-specific NK receptors (NKR) or on TCR alpha beta-mediated T cell activation. CD3-CD16+ NK cell clones expressing activating NKR (either CD94 or p50) were analyzed in a redirected killing assay using P815 target cells and appropriate mAb. A strong target cell lysis was detected in the presence of anti-NKR or anti-CD16 mAb alone. Addition of anti-p40 mAb resulted in a strong inhibition of both anti-NKR or anti-CD16 mAb-induced cytolysis. mAb specific for either CD45 or lymphocyte function associated antigen-1 did not exert any inhibitory effect in the same experimental system. Free intracellular calcium ([Ca2+]i) increase induced by mAb cross-linking of activating CD94 or p50 was inhibited by simultaneous engagement of p40 molecules, but not of other NK surface molecules including CD44 and CD56. In addition, cross-linking of p40 molecules strongly inhibited the CD94-induced tumor necrosis factor-alpha and IFN-gamma production. Analysis of TCR alpha beta or gamma delta T cell clones revealed that the engagement of p40 molecules, using specific mAb, induced some degree of inhibition only on anti-V beta (but not anti-V delta or anti-CD3) mAb-induced cytotoxicity. On the other hand, the p40 molecule engagement prevented T cell proliferation induced by either anti-V beta 8 or anti-V delta 2 mAb. A similar inhibitory effect was found on the IL-2-induced NK cell proliferation. Taken together, our present findings suggest that p40 may play a role in the regulation of NK and T lymphocyte activation and proliferation.  相似文献   

14.
The effect of CD4 expression on the activation threshold of mouse T lymphocytes has been analysed. To do this, the authors studied the response to antigen and other T cell receptor (TCR) ligands in a series of CD4- mutants obtained from the SR.D10 clone. This non-tumour clone spontaneously arose from the Th2 clone D10.G4.1, and characteristically shows a low threshold for antigen activation as well as reactivity to syngeneic antigen presenting cells (APC). Although SR.D10 CD4- mutant cells can be stimulated by antigen, they need higher antigen concentration or more APC than SR.D10 or CD4 transfectants to yield optimal antigen responses. Furthermore, CD4- clones are not activated by syngeneic APC or by clonotypic antibodies. These effects do not correlate with changes in the expression of cell surface molecules implicated in antigen recognition, like TCR/CD3, CD2, LFA-1, or CD45, or with lower p56lck or p59fyn activity in the mutant cells. Since inhibition experiments using anti-CD4 antibodies have previously shown that activation of the CD4+ T cell clone D10.G4.1 by antigen or alloantigens is largely dependent on CD4, our results indicate that activation by antigen-plus self MHC may become CD4-independent if the activation threshold is lowered enough, e.g. in cells like SR.D10. Expression of CD4 further lowers the activation threshold of the cells, allowing the detection of low-affinity TCR reactivities like those directed at self MHC. Moreover, by using anti-TCR/CD3 antibodies, the authors have confirmed the importance of CD4-associated tyrosine kinase activity in early TCR/CD3 signalling in this Th2 cell line, as (1) upon TCR/CD3 ligation, tyrosine phosphorylation is detected only in those CD3 chains co-precipitating with CD4; and (2) CD4 expression is needed for efficient early tyrosine phosphorylation and detectable p56lck-TCR co-precipitation.  相似文献   

15.
The T cell receptor (TCR) is internalized following activation of protein kinase C (PKC) via a leucine (Leu)-based motif in CD3gamma. Some studies have indicated that the TCR is recycled back to the cell surface following PKC-mediated internalization. The functional state of recycled TCR and the mechanisms involved in the sorting events following PKC-induced internalization are not known. In this study, we demonstrated that following PKC-induced internalization, the TCR is recycled back to the cell surface in a functional state. TCR recycling was dependent on dephosphorylation of CD3gamma, probably mediated by the serine/threonine protein phosphatase-2A, but independent on microtubules or actin polymerization. Furthermore, in contrast to ligand-mediated TCR sorting, recycling of the TCR was independent of the tyrosine phosphatase CD45 and the Src tyrosine kinases p56(Lck) and p59(Fyn). Studies of mutated TCR and chimeric CD4-CD3gamma molecules demonstrated that CD3gamma did not contain a recycling signal in itself. In contrast, the only sorting information in CD3gamma was the Leu-based motif that mediated lysosomal sorting of chimeric CD4-CD3gamma molecules. Finally, we found a correlation between the phosphorylation state of CD3gamma and T cell responsiveness. Based on these observations a physiological role of CD3gamma and TCR cycling is proposed.  相似文献   

16.
17.
Accessory molecule interactions can be critical in determining the outcome of a T cell's encounter with antigen. Cell adhesion proteins may augment T cell responses by facilitating TCR engagement of the antigen-MHC complex, while co-stimulatory molecules may deliver distinct signals that modulate T cell responsiveness. CD43 (leukosialin, sialophorin) has been suggested to influence cell activation by steric hindrance based upon the large size and glycosylation of the protein, as well as the relative abundance of the protein on the cell surface. In this paper we examine both in vitro and in vivo T cell-dependent responses in CD43-deficient mice. We demonstrate that T cells from CD43-deficient mice are hyper-responsive following both in vivo and in vitro activation, and that this is observed in response to not only TCR-CD3-mediated stimulation, but also following receptor-independent activation. This data suggests that mechanisms other than non-specific steric hindrance are important in the regulation of T cell activation by CD43.  相似文献   

18.
We have previously shown that a tyrosine to leucine replacement in the transmembrane region of T cell receptor (TCR)-beta results in a deficient induction of CD95-L and apoptosis upon TCR triggering in a transfected T cell line. By contrast, interleukin (IL)-2 production and the expression of CD25 and CD69 were normally induced. Since the mutation in TCR-beta also resulted in impaired association of CD3-zeta, it was proposed that this chain is specifically required for the induction of apoptosis. We now show that the deficient induction of CD95-L and apoptosis does not derive from a general lower production of second messengers, since intracellular Ca2+ fluxes and tyrosine phosphorylation of total proteins were elicited at wild-type levels. Unlike in T cell clones stimulated with partial agonists, both p21 and p18 forms of tyrosine-phosphorylated CD3-zeta were detected, although the overall level of tyrosine-phosphorylated CD3-zeta was low. More strikingly, inducible association of ZAP70 to CD3-zeta was strongly inhibited, despite a normal induction of ZAP70 tyrosine phosphorylation. Finally, ZAP70 was not concentrated near the plasma membrane in the apoptosis-deficient cells. These results suggest that CD3-zeta is necessary for engagement of a specific signaling pathway leading to CD95-L expression that also needs the recruitment of ZAP70.  相似文献   

19.
Cas-L (pp105), a Crk-associated substrate (p130(Cas))-related protein, was first identified as a 105-kDa protein that is tyrosine-phosphorylated following beta1 integrin cross-linking in T cells. Cas-L contains possible multiple binding sites for the Src homology (SH) 2 domains of various signaling molecules, and appears to be involved in signal transduction through phosphorylated tyrosine-mediated protein-protein interaction. Since Cas-L is preferentially expressed in lymphocytes, it is conceivable that Cas-L plays an important role in lymphocyte-specific signals. Here, we show the involvement of Cas-L in the T cell receptor (TCR)/CD3 signaling pathway. Cas-L is transiently phosphorylated following CD3 cross-linking, and tyrosine-phosphorylated Cas-L binds to Crk and C3G. Furthermore, a Cas-L mutant that lacks the SH3 domain, the binding site for focal adhesion kinase (FAK), is also tyrosine-phosphorylated upon CD3 cross-linking, but not upon beta1 integrin crosslinking, suggesting that FAK is not involved in CD3-dependent Cas-L phosphorylation. Taken together, the present study indicates a novel signaling pathway mediated by tyrosine-phosphorylated Cas-L upon the TCR/CD3 stimulation.  相似文献   

20.
The activation, function, and development of peripheral T lymphocytes are dependent on the ability to signal properly through the surface T-cell antigen receptor (TCR)-CD3 complex. Transmission of such signals requires the activation of specific cytoplasmic protein tyrosine kinases (PTK) associated with the TCR. Recently, mutations in one such PTK, called ZAP-70, have been shown to be responsible for a rare, autosomal recessive form of severe combined immunodeficiency syndrome (SCID) in humans. This distinctive SCID syndrome is characterized by the selective absence of peripheral CD8+ T cells and by the presence of circulating CD4+ T cells that do not respond to TCR-mediated stimuli in vitro. T-cell immunodeficiency syndromes that arise as a consequence of inherited mutations in either the CD3epsilon or CD3gamma subunit proteins have also been described in rare patients. Absence of these TCR components results in severely decreased expression of the surface TCR-CD3 complex and defective signal transduction through the TCR. In this report, the clinical, laboratory, and molecular findings of these immunodeficiency disorders are described, insights are provided by these inherited defects into the pathways of TCR signal transduction, and T-cell development is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号