首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hydroxypropylmethylcellulose (HPMC) is becoming very popular in the formulation of controlled release tablets, mainly because of its hydrophillic and swelling properties. In HPMC tablet matrix systems, the drug release occurs mainly by Fickian diffusion and by polymer relaxation. The amount of drug released by these two phenomena was quantified by applying a heuristic model recently proposed. Recent studies show that it is possible to modify the kinetics of drug release by restricting matrix swelling. The aim of this study is to present some new evidence that tends to confirm these findings and to quantify the Fickian and case II relaxational contribution of drug release by using a PCNONLIN computer software package. Results obtained show a direct relationship between releasing areas and the amount of drug dissolved. Tablets with matrix swelling restrictions exhibit a shift towards drug release by relaxational mechanism, which makes this technique a useful tool when a shift towards constant drug release is desired.  相似文献   

2.
Abstract

Controlled-release swellable tablets were prepared by a simple direct compression process using hydroxypropylmethylcellulose (HPMC) as the matrix former. The effects of the viscosity and concentration of the polymer and the pH of the dissolution medium on the release behavior of acetazolamide were investigated. The influence of the drug particle size was also evaluated. Ten, 15, 20, and 25% of two different viscosity grades of HPMC were dry mixed with acetazolamide, Fast Flo Lactose, and magnesium stearate, then directly compressed into tablets. The experimental tablets were tested for their drug contents, weight variations, and hardnesses. Dissolution tests were carried out under sink conditions at three different pH values: pH 1.2, 5.4, and 7.4. Release rate data were evaluated according to the equation log M/Mw = log k + n log t.  相似文献   

3.
Controlled-release swellable tablets were prepared by a simple direct compression process using hydroxypropylmethylcellulose (HPMC) as the matrix former. The effects of the viscosity and concentration of the polymer and the pH of the dissolution medium on the release behavior of acetazolamide were investigated. The influence of the drug particle size was also evaluated. Ten, 15, 20, and 25% of two different viscosity grades of HPMC were dry mixed with acetazolamide, Fast Flo Lactose, and magnesium stearate, then directly compressed into tablets. The experimental tablets were tested for their drug contents, weight variations, and hardnesses. Dissolution tests were carried out under sink conditions at three different pH values: pH 1.2, 5.4, and 7.4. Release rate data were evaluated according to the equation log M/Mw = log k + n log t.  相似文献   

4.
In porous hydrophilic polymeric systems, two phenomena control the release of drugs: the water uptake and polymer swelling.

Directly compressed hydrophilic matrices were prepared with scleroglucan as gelling agent. A principal components analysis enables the authors to study the correlation between the above phenomena and the dissolution behavior in order to interpret the effect of polymer concentration, excipient solubility and compression force on the drug release.  相似文献   

5.
In porous hydrophilic polymeric systems, two phenomena control the release of drugs: the water uptake and polymer swelling.

Directly compressed hydrophilic matrices were prepared with scleroglucan as gelling agent. A principal components analysis enables the authors to study the correlation between the above phenomena and the dissolution behavior in order to interpret the effect of polymer concentration, excipient solubility and compression force on the drug release.  相似文献   

6.
高分子药物缓释材料   总被引:14,自引:0,他引:14  
本文首先介绍了高分子药物缓释材料的分类,然后着重叙述了两类热敏性药物缓释材料的研究概况及性能特点,最后讨论了药物缓释过程的理论研究。  相似文献   

7.
Relationship Between Swelling and Drug Release in a Hydrophilic Matrix   总被引:3,自引:0,他引:3  
Hydroxypropylmethylcellulose (HPMC) is widely used for controlled-release preparations. The process of drug release is controlled by matrix swelling and polymer dissolution. This study examines the mechanism of behaviour of HPMC in a polymer-drug directly-compressed matrix. The results obtained show that the swelling of HPMC which can be described by first-order kinetics is affected by concentration and viscosity grade of the polymer. This swelling action of HPMC in turn is controlled by the rate of water uptake into the matrices. An inverse relationship exists between the drug release rate and matrix swelling rate. This implies that HPMC swelling is one of the factors affecting drug release. The swelling behaviour of HPMC is therefore useful in predicting drug release.  相似文献   

8.
Blends of hydroxyethylcellulose (HEC) and sodium carboxymethylcellulose (NaCMC) were used to achieve zero order release of chlorpheniramine maleate (CM) from hydrophilic matrix capsules. Dynamic swelling/erosion and response surface measurements were made to provide an insight into the drug release behavior. The drug to total polymer and the HEC to NaCMC ratio influences the rate of drug release. NaCMC appears to influence water uptake and erosion of the matrix mixture. The factors by which zero-order drug release is achieved may include synchronization of the rates of water uptake and polymer erosion even though a constant diffusional pathlength may not be maintained. The combined mixture factorial design presented in this study allows for the characterization and optimization of the drug release profiles.  相似文献   

9.
Blends of hydroxyethylcellulose (HEC) and sodium carboxymethylcellulose (NaCMC) were used to achieve zero order release of chlorpheniramine maleate (CM) from hydrophilic matrix capsules. Dynamic swelling/erosion and response surface measurements were made to provide an insight into the drug release behavior. The drug to total polymer and the HEC to NaCMC ratio influences the rate of drug release. NaCMC appears to influence water uptake and erosion of the matrix mixture. The factors by which zero-order drug release is achieved may include synchronization of the rates of water uptake and polymer erosion even though a constant diffusional pathlength may not be maintained. The combined mixture factorial design presented in this study allows for the characterization and optimization of the drug release profiles.  相似文献   

10.
Abstract

The purpose of this investigation was to study the drug release mechanisms for tablet matrices of carbomer. Carbomer is a polymer of acrylic acid which is cross-linked with polyalkenyl polyether. The drug and the carbomer were blended and directly compressed into tablets using a laboratory Carver press. The influence of the level of carbomer, the type of drug, and the pH of dissolution media were investigated by measuring drug release kinetics. In general, the release of a relatively neutral molecule (e.g. theophylline) in the pH 7.2 phosphate buffer solution appears to exhibit nearly zero-order kinetics via a diffusion-controlled mechanism for all polymer levels studied (10-85%).

The drug release process based on diffusion can be described by the general expression:

Mt = k1t1/2 + k2t

where M, represents the amount of the drug released at time t, and k1, k2 are related to kinetic constants characteristic of the drug delivery systems. The release kinetics are modified when an ionic species, such as sodium salicylate, is incorporated into the tablet matrix.  相似文献   

11.
Studies on Drug Release from a Carbomer Tablet Matrix   总被引:3,自引:0,他引:3  
The purpose of this investigation was to study the drug release mechanisms for tablet matrices of carbomer. Carbomer is a polymer of acrylic acid which is cross-linked with polyalkenyl polyether. The drug and the carbomer were blended and directly compressed into tablets using a laboratory Carver press. The influence of the level of carbomer, the type of drug, and the pH of dissolution media were investigated by measuring drug release kinetics. In general, the release of a relatively neutral molecule (e.g. theophylline) in the pH 7.2 phosphate buffer solution appears to exhibit nearly zero-order kinetics via a diffusion-controlled mechanism for all polymer levels studied (10-85%).

The drug release process based on diffusion can be described by the general expression:

Mt = k1t1/2 + k2t

where M, represents the amount of the drug released at time t, and k1, k2 are related to kinetic constants characteristic of the drug delivery systems. The release kinetics are modified when an ionic species, such as sodium salicylate, is incorporated into the tablet matrix.  相似文献   

12.
A physical model of a new matrix-type system is presented where constant drug release can be maintained irrespective of the extent of the tortuosity and receding drug boundary. Theophylline base was dispersed as discrete crystals and fine particles in a matrix formed by the cross-linking of polymeric mixtures consisting of PEG, acrylic resins and ethyl cellulose. DSC analysis was performed to identify any solid state inactivation of the drug. Concave tablets at specified pressures were prepared in order to achieve a wide range of release rates and patterns of release. It was found that the patterns of release could be controlled by the formulation components and the manufacturing procedures. Drug release rates were determined spectrophotometrically under sink conditions and the flux of drug release, dQ/dt, from these matrix-type delivery systems was almost constant over 15 hours, during which time about 85% of the active drug was released. The release rate was devoid of any hydrodynamic boundary effect and environmental pH. The cumulative amount of drug released was found to be in accordance with zero-order kinetics. The system can be modified within broad limits and have flexibility as well as a wide spectrum of applicability with respect to different types of drugs.  相似文献   

13.
A physical model of a new matrix-type system is presented where constant drug release can be maintained irrespective of the extent of the tortuosity and receding drug boundary. Theophylline base was dispersed as discrete crystals and fine particles in a matrix formed by the cross-linking of polymeric mixtures consisting of PEG, acrylic resins and ethyl cellulose. DSC analysis was performed to identify any solid state inactivation of the drug. Concave tablets at specified pressures were prepared in order to achieve a wide range of release rates and patterns of release. It was found that the patterns of release could be controlled by the formulation components and the manufacturing procedures. Drug release rates were determined spectrophotometrically under sink conditions and the flux of drug release, dQ/dt, from these matrix-type delivery systems was almost constant over 15 hours, during which time about 85% of the active drug was released. The release rate was devoid of any hydrodynamic boundary effect and environmental pH. The cumulative amount of drug released was found to be in accordance with zero-order kinetics. The system can be modified within broad limits and have flexibility as well as a wide spectrum of applicability with respect to different types of drugs.  相似文献   

14.
A new oral dosage form for controlled and complete release of drug after a predetermined lag time is described. The system, designed to exploit the relatively constant small intestine transit time, consists of a drug-containing core coated with a polymeric matrix formed by a channeling agent (NaCl, mannitol, and Emdex) and an inert polymer (Eudragit RS100). The lag time was found to be dependent on type and particle size of the channeling substances used. Also, rheological properties of the binary mixtures (channeling substance-polymer) can affect the lag time periods. On the other hand, the release kinetics were found to be influenced significantly by excipient type and particle size. Results obtained from in vitro dissolution testing demonstrated that this device potentially could be used to deliver drugs orally for up to once-a-day dosing at controllable rates.  相似文献   

15.
A new oral dosage form for controlled and complete release of drug after a predetermined lag time is described. The system, designed to exploit the relatively constant small intestine transit time, consists of a drug-containing core coated with a polymeric matrix formed by a channeling agent (NaCl, mannitol, and Emdex) and an inert polymer (Eudragit RS100). The lag time was found to be dependent on type and particle size of the channeling substances used. Also, rheological properties of the binary mixtures (channeling substance–polymer) can affect the lag time periods. On the other hand, the release kinetics were found to be influenced significantly by excipient type and particle size. Results obtained from in vitro dissolution testing demonstrated that this device potentially could be used to deliver drugs orally for up to once-a-day dosing at controllable rates.  相似文献   

16.
Abstract

The authors have prepared hard capsules containing semisolid matrix systems with fatty excipients and acetylsalicylic acid (ASA) in order to decrease the dissolution rate of this active substance. With excipients like Gélucires and Simulsols, they obtained matrix systems easy to prepare and having a good stability, at least until 37°C. These systems release in vitro acetylsalicylic acid in about 8 hours; but administered p.o. to man they release ASA too rapidly in less then 4 hours  相似文献   

17.
The objective of this research was to evaluate the effect of hydroxypropylmethylcellulose (HPMC; Methocel K4M Premium) level and type of excipient on theophylline release and to attempt to predict the drug release from hydrophilic swellable matrices. Formulations containing theophylline anhydrous (10% w/w), Methocel K4M Premium (10%, 30%, and 40% w/w), different diluents (Lactose Fast Flo, Avicel PH-101, and Emcompress), and magnesium stearate (0.75% w/w) were prepared by direct compression at a target weight of 450 mg ± 5% and target hardness of 7 kp to 10 kp. It was found that, as the percentage of polymer in all formulations increased from 10% to 30% or 40%, the drug release decreased. However, there was no significant difference in drug release between formulations containing 30% polymer and formulations containing 40% polymer. At low levels of polymer, the drug release is controlled by the type of diluent used. Avicel PH-101 formulation gave the highest release, while its corresponding Emcompress formulation gave the lowest release. Formulations containing 30% or 40% polymer gave the same release profiles irrespective of the type of diluent used. In all cases, replacement of a portion of Methocel K4M Premium with any diluent resulted in increase of theophylline release. In addition, this investigation demonstrated that the drug release from hydrophilic swellable matrices can be predicted using only a minimum number of experiments.  相似文献   

18.
Abstract

Investigation was conducted to evaluate dried molasses as a direct compression matrix for oral controlled release drug delivery system based on its tendency to form a gel-like layer around an inner dry core tablet when it comes in contact with fluid. Dried molasses matrix was modified by incorporation of hydroxypropylmethylcellulose (HPMC) at four concentration levels (12.5, 15.0, 20.0 and 28.57%) to obtain a gel layer of suitable characteristics, and compressed directly on an instrumented rotary tablet press. Theophylline was used as a model drug. Drug release study was performed using USP dissolution apparatus 2, rotated at 20 rpm, in distilled water, simulated gastric fluid pH 1.2, and simulated intestinal fluid pH 7.5. Theopylline was determined by a High Pressure Liquid Chromatographic method, utilizing beta-hydroxyethyl theophylline (BHET) as an internal standard. Results showed an inverse relationship between the rate of release and the level of HPMC, with release period ranging from 3 to 36 hours. Releases rate was greatest in intestinal fluid, least in distilled water, and intermediate in gastric fluid.  相似文献   

19.
Abstract

A silicone elastomer latex was evaluated as a wet-granulating agent in preparing controlled release matrix tablets containing a water soluble active ingredient. A one-half fractional factorial statistical design was used to investigate the effect of five different formulation and non-formulation variables on the in vitro release characteristics of the drug from the matrix tablets. Tablets containing a high percent of fumed colloidal silica exhibited a faster drug release rate. A high drug to polymer ratio in the tablets was also shown to result in a faster release of the drug. Granules dried at a higher temperature (80°C vs. 60°C) produced tablets with a slower drug release rate. The release of the drug was shown to be pH dependent. A higher drug release rate was obtained in a dissolution medium with a lower pH (1.2 vs. 6.8).  相似文献   

20.
Investigation was conducted to evaluate dried molasses as a direct compression matrix for oral controlled release drug delivery system based on its tendency to form a gel-like layer around an inner dry core tablet when it comes in contact with fluid. Dried molasses matrix was modified by incorporation of hydroxypropylmethylcellulose (HPMC) at four concentration levels (12.5, 15.0, 20.0 and 28.57%) to obtain a gel layer of suitable characteristics, and compressed directly on an instrumented rotary tablet press. Theophylline was used as a model drug. Drug release study was performed using USP dissolution apparatus 2, rotated at 20 rpm, in distilled water, simulated gastric fluid pH 1.2, and simulated intestinal fluid pH 7.5. Theopylline was determined by a High Pressure Liquid Chromatographic method, utilizing beta-hydroxyethyl theophylline (BHET) as an internal standard. Results showed an inverse relationship between the rate of release and the level of HPMC, with release period ranging from 3 to 36 hours. Releases rate was greatest in intestinal fluid, least in distilled water, and intermediate in gastric fluid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号