首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Nanocrystalline α-Al2O3 ceramic powders have been prepared from an aqueous solution of aluminum nitrate and sucrose. Soluble Al ion-sucrose solution forms the precursor material once it is completely dehydrated. Heat treatment of the dehydrated precursors at low temperature (600°C) results in the formation of porous single-phase α-Al2O3. The precursor and heat-treated powders have been characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and BET surface area analysis. The phase-pure nanocrystalline α-Al2O3 particles had an average specific surface area of >190 m2/g, with an average pore size between 18 and 25 nm.  相似文献   

2.
Nanocrystalline aluminum nitride (AlN) with surface area more than 30 m2/g was synthesized by nitridation of nanosized δ-Al2O3 particles using NH3 as a reacting gas. The resulting powders were characterized by CHN elemental analysis, X-ray diffraction (XRD), Fourier transform infrared spectra, X-ray photoelectron spectra, field-emission scanning electron microscopy, transmission electron microscopy, and Brunauer–Emmett–Teller surface area techniques. It was found that nanocrystalline δ-Al2O3 was converted into AlN completely (by XRD) at 1350°–1400°C within 5.0 h in a single-step synthesis process. The complete nitridation of nanosized alumina at relatively lower temperatures was attributed to the lack of coarsening of the initial δ-Al2O3 powder. The effect of precursor powder types on the conversion was also investigated, and it was found that α-Al2O3 was hard to convert to AlN under the same conditions.  相似文献   

3.
Novel microcomposite powders, consisting of inert cores (αAL-Al2O3) surrounded by reactive cement-based coatings (CaAl2O4), were synthesized by a modified Pechini process. The evolution of the crystalline CaAl2O4 phase during calcination was studied using multiple analytical techniques, including DRIFTS,13C and 27AlMAS FT-NMR, and XRD, for both pure CaAl2O4 and CaAl2O4-coated Al2O3 precursor powders. In both powders, decomposition proceeded via hydrocarbon chain scission and removal of ester groups at low temperatures ( T < 450°C), followed by the formation of inorganic carbonates at higher temperatures ( T > 450°C). These decomposition processes were accelerated by the underlying Al2O3 cores. Transmission electron microscopy (TEM) of the fully calcined powders showed that the inert αAL-Al2O3 particles were surrounded by relatively uniform CaAl2O4 coatings ranging in thickness from approximately 10 to 100 nm.  相似文献   

4.
Thermal reactions in 93% Al2O3-7% MgO and 95.8% Al2O3-4.2% MgO gels seeded with α-Al2O3, MgAl2O4, α-Fe2O3, and SiO2, sols were investigated by differential thermal analysis to determine the extent of nucleation catalysis of solid-state reactions. Seeding with α-Al2O3 lowered the α-Al2O3 crystallization temperature in these xerogels by 100° to 150°C. Spinel seeds have much less effect on the γ-α transition, and α-Fe2O3 and SiO2 seeds do not affect it significantly. Isostructural seeding of gels may therefore permit lower ceramic processing temperatures.  相似文献   

5.
This study proposes a method to form ultrafine α-Al2O3 powders. Oleic acid is mixed with Al(OH)3 gel. The gel is the precursor of the Al2O3. After it is mixed and aged, the mixture is calcined in a depleted oxygen atmosphere between 25° and 1100°C. Oleic acid evaporates and decomposes into carbon during the thermal process. Residual carbon prevents the growth of agglomerates during the formation of α-Al2O3. The phase transformation in this process is as follows: emulsion →γ-Al2O3→δ-Al2O3→θ-Al2O3→α-Al2O3. This process has no clear θ phase. Aging the mixed sample lowers the formation temperature of α-Al2O3 from 1100° to 1000°C. The average crystallite diameter is 60 nm, measured using Scherrer's equation, which is consistent with TEM observations.  相似文献   

6.
The microstructure and humidity-sensitive characteristics of α -Fe2O3 porous ceramic were investigated. Microporous α -Fe2O3 powders were obtained by controlling the topotactic decomposition reaction of α -FeOOH. Water vapor adsorption thermogravimetrical experiments were carried out in the relative humidity (rh) range 0% to 95% on the α -Fe2O3 powder and the 900°C sintered compact. The microstructure was investigated by SEM, TEM, Hg intrusion, and N2 adsorption porosimetry techniques. The humidity sensitivity was investigated by the impedance measurements technique in 0% to 95% rh on the compacts sintered at 50°C steps in the 850° to 1100°C range. Humidity response was found to be affected by the microstructure, i.e., the characteristics of the precursor powders and sintering temperatures.  相似文献   

7.
The growth of α-Al2O3 from a planar specimen of thermally grown γ-alumina on a molybdenum transmission electron microscope grid was studied. The α-Al2O3 grows into the transition alumina matrix and then thickens via a ledge growth mechanism. Faceted Mo crystallites cause pinning of α-Al2O3 ledges and are larger on α-Al2O3 than on the transition alumina matrix.  相似文献   

8.
Composites of β-Ce2O3·11Al2O3 and tetragonal ZrO2 were fabricated by a reductive atmosphere sintering of mixed powders of CeO2, ZrO2 (2 mol% Y2O3), and Al2O3. The composites had microstructures composed of elongated grains of β-Ce2O3·11Al2O3 in a Y-TZP matrix. The β-Ce2O3·11Al2O3 decomposed to α-Al2O3 and CeO2 by annealing at 1500°C for 1 h in oxygen. The elongated single grain of β-Ce2O3·11Al2O3 divided into several grains of α-Al2O3 and ZrO2 doped with Y2O3 and CeO2. High-temperature bending strength of the oxygen-annealed α-Al2O3 composite was comparable to the β-Ce2O3·11Al2O3 composite before annealing.  相似文献   

9.
ZrO2–Al2O3 nanocrystalline powders have been synthesized by oxidizing ternary Zr2Al3C4 powders. The simultaneous oxidation of Al and Zr in Zr2Al3C4 results in homogeneous mixture of ZrO2 and Al2O3 at nanoscale. Bulk nano- and submicro-composites were prepared by hot-pressing as-oxidized powders at 1100°–1500°C. The composition and microstructure evolution during sintering was investigated by XRD, Raman spectroscopy, SEM, and TEM. The crystallite size of ZrO2 in the composites increased from 7.5 nm for as-oxidized powders to about 0.5 μm at 1500°C, while the tetragonal polymorph gradually converted to monolithic one with increasing crystallite size. The Al2O3 in the composites transformed from an amorphous phase in as oxidized powders to θ phase at 1100°C and α phase at higher temperatures. The hardness of the composite increased from 2.0 GPa at 1100°C to 13.5 GPa at 1400°C due to the increase of density.  相似文献   

10.
Aluminum nitride (AlN) powders were synthesized by gas reduction–nitridation of γ-Al2O3 using NH3 and C3H8 as the reactant gases. AlN was identified in the products synthesized at 1100°–1400°C for 120 min in the NH3–C3H8 gas flow confirming that AlN can be formed by the gas reduction–nitridation of γ-Al2O3. The products synthesized at 1100°C for 120 min contained unreacted γ-Al2O3. The 27A1 MAS NMR spectra show that Al–N bonding in the product increases with increasing reaction temperature, the tetrahedral AlO4 resonance decreasing prior to the disappearance of the octahedral AlO6 resonance. This suggests that the tetrahedral AlO4 sites of the γ-Al2O3 are preferentially nitrided than the AlO6 sites. AlN nanoparticles were directly formed from γ-Al2O3 at low temperature because of this preferred nitridation of AlO4 sites in the reactant. AlN nanoparticles are formed by gas reduction–nitridation of γ-Al2O3 not only because the reaction temperature is sufficiently low to restrict grain growth, but also because γ-Al2O3 contains both AlO4 and AlO6 sites, by contrast with α-Al2O3 which contains only AlO6.  相似文献   

11.
Fine A12O3 powder was prepared by the gas-phase oxidation of aluminum acetyl-acetonate. The reaction products were amorphous material at 600° and 800°C, γ-Al2O3 at 1000° and 1200°C, and δ-Al2O3 at 1400°C. The powders consisted of spherical particles from 10 to 80 nm in diameter; particle size increased with increasing reaction temperature and concentration of chelate in the gas.  相似文献   

12.
Mechanical mixture of γ-Al2O3 and amorphous SiO2, and diphasic Al2O3/SiO2 gels of three different compositions were synthesized. They were subjected to heat treatment to various temperatures in the range 900°–1600°C. Qualitative X-ray diffraction data show that these diphasic gels do not crystallize to a combined mixture of θ-Al2O3 and α-Al2O3 polymorphs at the intermediate stage, prior to mullite formation. Estimated mullite formation data show that the course of its formation from mixed oxides was different from that of diphasic gels. Results are compared with previous findings and the concept of Al–Si spinel formation in the phase transformation of stoichiometric diphasic gel system is substantiated.  相似文献   

13.
Since the difference between oxygen-ion and cation diffusion coefficients is greater for α-Cr2O3 than for α-Fe2O3 or α-Al2O3, a study of initial-sintering kinetics was undertaken to show unequivocally which species is rate controlling. Fine powders of α-Cr2O3, obtained by thermal decomposition of reagent-grade (NH4)2Cr2O7, were lightly compacted and their isothermal rates of shrinkage were determined between 1050° and 1300°C. Resultant data follow volume-diffusion sintering models, and calculated diffusion coefficients agree with, those measured for oxygen ions in α-Cr2O3. There is little evidence that oxygen diffusion along grain boundaries becomes so enhanced that chromium ions are left in control of the process.  相似文献   

14.
The effect of Cr and Fe in solid solution in γ-Al2O3 on its rate of conversion to α-Al2O3 at 1100°C was studied by X-ray diffraction. The δ form of Al2O3 was the principal intermediate phase produced from both pure γ-Al2O3 and that containing Fe3+ in solid solution, although addition of Fe greatly reduced crystallinity. Reflectance spectra and magnetic susceptibilities showed that Cr exists as Cr6+ in γ-Al2O3 and as Cr3+ in α-Al2O3, with θ-Al2O3 as the intermediate phase. The intermediates formed rapidly, and the rates of their conversion to α-Al2O3 were increased by 2 and 5 wt% additions of Fe and decreased by 2 and 4 wt% additions of Cr. An approximately linear relation observed between α-Al2O3 formation and decrease in specific surface area was only slightly affected by the added ions. This relation can be explained by a mechanism in which the sintering of δ- or θ-Al2O3, within the aggregates of their crystallites, is closely coupled with conversion of cubic to hexagonal close packing of O2- ions by synchro-shear.  相似文献   

15.
Single-crystal α-alumina (Al2O3) hexagonal platelets with a diameter of about 200 nm and 25 nm in thickness were synthesized by heating a mixture of boehmite and potassium sulfate at 1000°C for 2 h and washing with water. The potassium sulfate addition effects on the Al2O3 phase and morphology were investigated using differential thermal analysis (DTA), X-ray diffraction (XRD), and transmission electron microscopy (TEM). It was found that potassium sulfate addition helps in the formation of single-crystal α-Al2O3 hexagonal platelets and promotes phase transformation from intermediate γ-Al2O3 to α-Al2O3.  相似文献   

16.
α-Al2O3 platelet powders were synthesized in molten Na2SO4 flux. The size of α-Al2O3 platelets was significantly reduced when partially decomposed rather than pure Al2(SO4)3 was used as the source of Al2O3; a further reduction in the platelet size was realized through additional seeding with nanosized α-Al2O3 seeds. The addition of microsized α-Al2O3 platelet seeds significantly influenced the platelet morphology of the final powder, as well. The platelet size of the final powder was in direct proportion to the size of the platelet seeds, and was in reverse proportion to the cube root of the platelet seed content.  相似文献   

17.
Gradient, porous alumina ceramics were prepared with the characteristics of microsized tabular α-Al2O3 grains grown on a surface with a fine interlocking feature. The samples were formed by spin-coating diphasic aluminosilicate sol on porous alumina substrates. The sol consisted of nano-sized pseudo-boehmite (AlOOH) and hydrolyzed tetraethyl orthosilicate [Si(OC2H5)4]. After drying and sintering at 1150°–1450°C, the crystallographic and chemical properties of the porous structures were investigated by analytical electron microscopy. The results show that the formation of tabular α-Al2O3 grains is controlled by the dissolution of fine Al2O3 in the diphasic material at the interface. The nucleation and growth of tabular α-Al2O3 grains proceeds heterogeneously at the Al2O3/glass interface by ripening nano-sized Al2O3 particles.  相似文献   

18.
In this paper, we describe variations in a boehmite (AlOOH) and oleic acid emulsion during the process of forming superfine α-Al2O3 crystallites from the mixture of oleic acid and a boehmite gel precursor. We also propose that the oleic acid decomposes under calcination, generating carbon, which can effectively prevent agglomeration of Al2O3 particles. Calcination for the present study was conducted under a reduced oxygen atmosphere, in the temperature range 25°–1100°C. Phase variations of the mixture under calcination were identified by Fourier transform infrared spectrometry (FTIR), X-ray diffractometry (XRD), and transmission electron microscopy (TEM). The FTIR spectra were used when the mixed emulsion of oleic acid and boehmite gel was heated, to investigate the adsorption reaction of the aluminum oleate; the C—O—C cross-linking structure of oxygenation, which aided in carbon formation; and the ability of the carbon generated with α-Al2O3 during phase transformation to prevent agglomeration (vermicularity). The products were analyzed by XRD at different temperatures, and TEM was used to examine the individual diameters of the α-Al2O3 crystallites.  相似文献   

19.
Solid solutions of AlVO4 crystallize at lower temperatures than amorphous materials between 50 and 70 mol% Al2O3 prepared by the simultaneous hydrolysis of aluminum and vanadyl alkoxides. They decompose into α-Al2O3, and V2O5, at 775° to 800°C. The compound AlVO4 prepared from 50 mol% Al2O3 has a triclinic unit cell with a = 0.6471 nm, b = 0.7742 nm, c = 0.9084 nm, α= 96.848°, β= 105.825°, and γ= 101.399°. The volume of the unit cell increases continuously with increases in Al2O3 content. The structure contains tetrahedral AlO4, octahedral AlO6, and tetrahedral VO4 groups.  相似文献   

20.
Microstructure development at solid-state diffusion-bonded Cu/α-Al2O3 interfaces has been studied using optical and electron microscopy. High-purity Cu foil was bonded between basal-oriented α-Al2O3 single-crystal plates at 1040°C for 24 h in a vacuum of ∼1.3 × 10−4 Pa (1 × 10−6 torr). Optical microscopy of as-bonded specimens revealed a large Cu grain size, fine pores, and long needles of Cu2O at the interface. Bulk specimens were annealed at 1000°C for various times under controlled oxygen partial pressures in CO/CO2 mixtures. Consistent with a thermochemical analysis, CuAlO2 could be formed at the interfaces. The CuAlO2 was acicular and discontinuous, but occurred in a uniform distribution over the bulk specimen interfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号