首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
We investigate the role of hydrogen solubility and diffusivity on the activation energy for hydrogen permeability and the relationship between the hydrogen permeability and resistance to hydrogen embrittlement in amorphous membranes, Cu50Zr50 and Cu65Zr35. The membrane with the lower activation energy for permeation showed higher hydrogen permeability, but it showed lower durability under hydrogen atmosphere. This relationship between the two properties is discussed on the basis of the nature of the short-range ordered (SRO) structures constituting amorphous membranes under hydrogen ambient.  相似文献   

2.
《Acta Materialia》2005,53(13):3703-3711
Amorphous (Ni0.6Nb0.4)100−xZrx (x = 0, 20, 30, 40 and 50 at.%) alloys were prepared by the melt-spinning technique, and the hydrogen permeation through those alloy membranes was examined. The local atomic structure in these alloys was also investigated by radial distribution function (RDF) analysis. Moreover, hydrogen solubility and diffusivity were also measured in order to discuss the mechanism for hydrogen permeation. The permeability of the Ni–Nb–Zr amorphous alloys increases with Zr content and temperature. The maximum hydrogen permeability is 1.59 × 10−8 mol m−1 s−1 Pa−1/2 at 673 K for the (Ni0.6Nb0.4)50Zr50 amorphous alloy. The (Ni0.6Nb0.4)50Zr50 amorphous alloy showed larger hydrogen solubility and diffusivity than the (Ni0.6Nb0.4)70Zr30 amorphous alloy. As the result, the (Ni0.6Nb0.4)50Zr50 amorphous alloy showed higher hydrogen permeability than the (Ni0.6Nb0.4)70Zr30 amorphous alloy at 673 K. The RDF analysis shows that the atomic distance between the Zr atoms increases by hydrogenation. The chemical ordering such that the number of Zr coordinates is much higher than that of Ni and Nb coordinates was found in the (Ni0.6Nb0.4)70Zr30 and (Ni0.6Nb0.4)50Zr50 amorphous alloys. The relation between the amorphous local structure and the permeation was discussed in detail.  相似文献   

3.
The variation of the hydrogen permeability with time was monitored during the permeation of hydrogen through metallic amorphous membranes of Ni45?XNb30Zr25CoX (X=0, 7.5, and 15 at%) in the temperature range of 350 to 450 °C. For tests performed between 3 and 5 bars, the alloy with the medium content of Co, i.e., 7.5 at%, had the most pronounced degradation while the alloy without Co showed less of a decrease in the hydrogen permeability with time. The change in the hydrogen permeability with the Co content was discussed in connection with the difference in the activation barrier energy for crystallization in the alloys.  相似文献   

4.
In this study, we report results of an investigation into the failure of Ni60Nb15Ti15Zr10 amorphous alloys occurring during hydrogen permeation performed at 473 K and 573 K. However, the amorphous membrane did not fail during test performed at higher temperatures (673 K and 773 K). The failure of the Pd-coated Ni60Nb15Ti15Zr10 amorphous ribbon is attributed to the cracking of the hydrogenated Pd coating induced by the formation of α′ hydride phase in the low temperature range. 0  相似文献   

5.
Hydrogen permeability of Pd-coated Ni60Nb15Ti15Zr10 and Ni60Nb20Ti15Zr5 amorphous alloys was measured in the temperature range of 673 K to 773 K and was compared with the results obtained using Ni60Nb40, a binary amorphous alloy. The permeability thus measured was found to increase moderately increasing temperature. A long-term permeation test for the Pd-coated Ni60Nb15Ti15Zr10 amorphous alloy revealed high permeation stability up to 16.6 h.  相似文献   

6.
《Acta Materialia》2002,50(10):2701-2713
Hydrogen permeation through and hydrogen desorption from duplex stainless steel membranes of various thickness were studied by the electrochemical technique. During the permeation experiments, one side of a membrane was charged with hydrogen by galvanostatic cathodic polarisation in 0.1M NaOH at 25 °C. After an interruption of the hydrogen charging, the desorption rate of hydrogen was measured at both sides of the membrane. The obtained permeation and desorption rates were analysed in terms of the real values of the hydrogen diffusivity (Dα) and the length of diffusion paths (Lα) in the ferrite phase. The total amount of absorbed hydrogen consists mainly of the hydrogen dissolved in the ferrite matrix (diffusible hydrogen) and the hydrogen dissolved in the austenite phase (reversibly trapped hydrogen). Amounts and concentrations of these two forms of hydrogen were evaluated. Some peculiarities and limitations as regards the usefulness of the permeation–desorption measurements for studying hydrogen in the duplex stainless steel membranes are given.  相似文献   

7.
H. Tan  Y. Zhang  Y. Li   《Intermetallics》2002,10(11-12)
An in-situ dendritic crystalline α-La reinforced bulk metallic glass matrix composite was successfully synthesized by chill casting a La66Al14Cu10Ni10 alloy into copper mould with a rod diameter as large as 12 mm in diameter. The critical cooling rates for the formation of the in-situ composite determined by Bridgman solidification and for complete glass formation are 15 K/s and 450 K/s respectively. The thermal stability of the residual amorphous in the composite is higher than that of the fully amorphous sample of the same alloy.  相似文献   

8.
左仲  程晓英 《上海金属》2005,27(4):10-14
研究两种不同成分具有较大过冷液相区的四元合金Zr65Al7.5Ni10Cu17.5和Zr65Al10Ni10Cu15,非晶和晶态薄带吸氢行为,结果表qt两种薄带的吸氢量均随着温度的升高而增大,非晶薄带的吸氢量要小于同等条件下的晶态薄带的吸氢量且只有在673K吸氢后形成了氢化物,Zr65Al7.5Ni10Cu17.5非晶和晶态薄带吸氢后分别生成了Zr2NiH4.7和ZrH2;而Zr65Al10Ni10Cu15非晶和晶态两种薄带最后生成的氢化物同为ZrH2。  相似文献   

9.
氢渗透合金膜是一种重要的氢气提纯材料。本文简要介绍了目前存在的几种氢渗透合金膜的研究进展和各自的优缺点,重点讨论了氢渗透合金膜的工作原理、氢渗透性能和制备方法;详细分析了影响氢渗透性能的关键因素,包括氢渗透系数、氢扩散系数、氢溶解系数和氢脆性,提出了通过改善氢渗透合金膜的微观结构以提高膜材料的抗氢脆性、提高氢渗透系数和扩散系数的方法,最后对合金膜的发展趋势进行了探讨。  相似文献   

10.
ABSTRACT

In this work, the influence of various volume fractions of the crystalline phase in an amorphous matrix of Mg67Zn29Ca4 alloys was investigated for its corrosion resistance for biodegradable applications. An amorphous Mg67Zn29Ca4 alloy was successfully fabricated using melt casting into a copper mould. Then, to obtain different ratios of the crystalline phase in an amorphous matrix, the obtained amorphous rods with 3?mm diameters were annealed at 190, 230, 250, and 400°C. The volume fraction of the crystalline phase was measured by X-ray diffraction, and the microstructures of the obtained alloys were determined based on scanning electron microscopy images. Electrochemical testing was conducted in simulated body fluid at 37°C. This report shows that the ratio of the volume fractions of amorphous and crystalline phases in alloy microstructures strongly influences their corrosion behaviours. The alloy with a fully amorphous structure was the most resistive in the analysed media.  相似文献   

11.
采用碱性化学镀在Nb-Ti-Ni合金膜片表面和载玻片上沉积了Pd膜,利用X射线衍射(XRD),能谱(EDS)、扫描电子显微镜(SEM),示差扫描量热仪(DSC)等手段对Pd沉积膜的相结构、成分、形貌及热稳定性进行了分析。结果表明,制备的Pd沉积膜为非晶态结构,膜层呈现球状颗粒密排沉积形态,颗粒尺寸在1μm左右,膜中的P含量在3%~4%(质量分数,下同)。膜的热稳定性研究表明,在经675K热处理后,膜层仍保持其初始的颗粒密排沉积特征,随着温度的升高,颗粒尺寸有轻微增大的趋势,出现Pd相和Pd6P相。电化学测试结果表明,制备的非晶态Pd膜可显著提高合金膜片的氢渗透电流密度,相应的氢扩散系数增大,而非晶膜层经热处理后,其氢扩散系数有较明显的降低。  相似文献   

12.
Large-scale fabrication of Cu36Zr48Al8Ag8 amorphous alloy sheets having with lengths above 250 mm was performed using atmosphere-controlled twin roll strip casting. By constructing a continuous cooling transformation diagram, the critical cooling rate was determined to be 212.6 K/s. The size and morphology of the crystalline phases within the amorphous matrix, which was Al-rich and Ag-depleted, were confirmed by scanning electron microscopy. The presence of a small volume fraction fine dendritic crystalline phase was necessary for the improved plasticity of the amorphous strip under tensile deformation mode.  相似文献   

13.
The primary nanocrystallization behavior and microstructural evolution of the Zr61Al7.5Cu17.5Ni10Si4 alloy during annealing were investigated by isothermal differential scanning calorimetry, X-ray diffractometry and transmission electron microscopy. During continuous heating of the 4Si and the base (contains no Si) amorphous alloys at a heating rate of 10 K/min, the saturation point of nucleation for the 4Si amorphous alloy occurs at a crystallization fraction of 78%, which is significantly higher than 65% for the base alloy, implying that these metalloid atoms would extend the nucleation stage and refine crystalline particles. The sequence of crystallization phase from the amorphous matrix for the isothermally annealed 4Si amorphous alloy at 703 K is observed to be Zr2Cu and Zr2Ni at the early stage, Zr3Al at an intermediate stage, and Zr2Si at the final stage. Moreover, enrichment of Si atoms at the interface between Zr2Cu crystal and the amorphous matrix is detected. This may result in increasing the thermal stability of the remaining amorphous phase and retardation of the crystal growth of Zr2Cu particles.  相似文献   

14.
The local structures and the devitrifications of Ni70B30 nano-amorphous alloys prepared by chemical reduction method were studied by in-situ X-ray absorption fine structure (XAFS). The results indicate that the preparation temperature strongly affects the local structures of Ni70B30 amorphous alloys. The coordination geometry surrounding Ni atoms is a structure of amorphous Ni-like for the Ni70B30 (273 K) while the Ni70B30 (313 K) has amorphous Ni3B-like structure. In-situ XAFS analysis revealed that the Ni70B30 amorphous alloy prepared at the low temperature of 273 K is directly crystallized into the metallic Ni in a wide temperature range from 498 to 598 K. However, the crystallization of the sample prepared at the high temperature of 313 K is accomplished in two steps: the generation of intermediate product of crystalline Ni3B starting from 548 K and finishing at about 573 K; the unique formation of crystalline Ni at about 598 K.  相似文献   

15.
《Intermetallics》2002,10(11-12):1265-1270
The oxidation behavior of Zr–30Cu–10Al–5Ni bulk metallic glass and its crystalline counterpart was studied over the temperature range of 300–425 °C in dry air. In general, the oxidation kinetics of both amorphous and crystalline alloys followed a two- or three-stage parabolic rate law at T⩾350 °C, while at 300 °C the amorphous alloy oxidized following a linear behavior. The oxidation rate constants for the amorphous alloy are slightly higher than those for the crystalline alloy at 350–400 °C. The scale formed on the amorphous alloy consists of mainly tetragonal-ZrO2 at 300 °C, while a mixture of monoclinic-ZrO2 (m-ZrO2) and tetragonal-ZrO2 (t-ZrO2) and some CuO were detected at higher temperatures. The scale formed on the crystalline alloy, on the other hand, consists of mainly Al2O3, some tetragonal-ZrO2, and a slight amount of monoclinic-ZrO2 at 300 °C. At higher temperatures, the crystalline alloy consists of mainly monoclinic-ZrO2, some CuO and Cu2O, and limited tetragonal-ZrO2. It is suggested that the formation of Al2O3 (at 300 °C) and CuO/Cu2O (at 350-400 °C) on the crystalline alloy is responsible for the reduced oxidation rates as compared with those of amorphous alloy.  相似文献   

16.
The ultimate rolling reduction rate (ru) of the as-cast Nb–TiNi alloys was evaluated by measuring the thickness changes in cold rolled samples. Furthermore, the effects of cold rolling and subsequent anneal on hardness, microstructure, hydrogen permeability (Φ) and hydrogen flux J of the as-cast Nb40Ti30Ni30 alloy (mol%) were examined by a Vickers hardness tester, a scanning electron microscope (SEM), and a mass flow meter, respectively. The value of Φ for the Nb40Ti30Ni30 alloy was reduced with increasing rolling reduction rate and attained to one third of the original one by 50% rolling reduction, but recovered to the original one by anneal at 1373 K for 605 ks. Hydrogen flux J varied inversely proportional to the membrane thickness at 673 K. J of 12 ccH2/cm2/min was attained for the sample with the thickness of 120 μm. The present work has demonstrated that rolling and the subsequent anneal are effective and useful for the preparation of the hydrogen permeation Nb–TiNi alloy membrane.  相似文献   

17.
The aim of this study was to investigate the structure and corrosion resistance of amorphous, amorphous‐crystalline, and crystalline Mg67Zn29Ca4 alloy for biodegradable applications. This paper presents a preparation method and results of the structural characterization and corrosion resistance analysis of the material. Samples were prepared in the form of 3 mm diameter rods. The structure of the alloy was examined with the use of X‐ray diffractometry and scanning electron microscopy. The thermal properties of the samples were examined with differential scanning calorimetry (DSC). Results of DSC analysis were used to determine heat treatment temperatures, allowing to obtain different fractures of crystalline phase in the material. Corrosion resistance of heat‐treated samples was investigated by immersion tests and electrochemical measurements performed in the simulated body fluid. The X‐ray diffraction results confirmed that the prepared Mg67Zn29Ca4 alloy's structure is fully amorphous. After heat treatment, samples with different fractions of amorphous phase in the structure were obtained. Immersion tests of the samples showed that the structure significantly influenced corrosion resistance in examined materials. It should be pointed out, that certain amounts of crystalline phase in amorphous matrix can greatly improve the corrosion resistance of Mg67Zn29Ca4 alloy.  相似文献   

18.
The aim of the work was to produce the amorphous/crystalline composite with uniform distribution of fine crystalline soft phase. Silver–copper–titanium Ag20Cu30Ti50 alloy was prepared using 99.95 wt% Ag, 99.95 wt% Cu, 99.95 wt% Ti that were arc-melted in argon atmosphere. Then the alloy was melt spun on a copper wheel with linear velocity of 33 m/s. Investigation of the microstructure for both arc-melt massive sample and melt-spun ribbons was performed with use of scanning electron microscope (SEM) with EDS, light microscope (LM) and X-ray diffraction. The thermal stability was evaluated by differential scanning calorimetry (DSC). The properties such as Young modulus and Vickers hardness number before and after crystallization of the amorphous matrix were measured with use of nanoindenter. The microstructure was investigated by transmission electron microscope (TEM). It was found, that the alloy has a tendency for separation within the liquid state due to the miscibility gap which resulted in segregation into Ti–Cu–Ag matrix and Ag-base spherical particles after arc-melting. During rapid cooling through the melt spinning the Ag20Cu30Ti50 alloy formed an amorphous/crystalline composite of fcc silver-rich spherical particles within the amorphous Ti–Cu–Ag matrix.  相似文献   

19.
Zr–(Ti)–Cu–Al–Ni metallic glasses exhibit a high thermal stability corresponding to a wide undercooled liquid region. Depending on their composition, the formation of metastable intermediate phases, e.g. a quasicrystalline phase is possible. The combination of early and late transition metals makes these alloys very interesting regarding their interaction with hydrogen. Amorphous Zr55Cu30Al10Ni5, Zr65Cu17.5Al7.5Ni10 and Zr59Ti3Cu20Al10Ni8 ribbons were prepared by melt spinning and their microstructure and thermal behaviour was checked by X-ray diffraction, transmission electron microscopy and differential scanning calorimetry. The cathodic reactivity of alloy samples at different microstructural states and after pre-etching in 1 vol.-% HF was investigated in 0.1 M NaOH by applying potentiodynamic polarisation techniques. Galvanostatically hydrogenated samples were characterised by XRD, DSC, TEM and thermal desorption analysis (TDA). For amorphous Zr59Ti3Cu20Al10Ni8 samples an increase in electrochemical surface capacity by two orders of magnitude is observed after pre-etching. Compared to the quasicrystalline and crystalline alloy, the hydrogen reduction takes place at significantly lower overpotentials. Zr-based alloys cathodically absorb hydrogen up to H/M=1.65 while keeping the amorphous structure. Already small amounts of hydrogen cause a significant decrease of the thermal stability and changes in the crystallisation sequence. The hydrogen desorption is a two-stage process: (T<623 K) hydrogen desorption from high interstitial-site energy levels and (T>623 K) zirconium hydride formation and subsequent transformation under hydrogen effusion. Hydrogen suppresses the oxygen-triggered formation of metastable phases upon heating and supports primary copper segregation. At very high H/M ratios, severe zirconium hydride formation causes the crystallisation of new compounds.  相似文献   

20.
Amorphous Al50Ta60 alloy powders have been synthesized by mechanical alloying (MA) from elemental powders of aluminium and tantalum, and mechanical disordering (MD) from crystalline intermetallic compound powders of AlTa respectively using the rod milling technique. The mechanically alloyed and the mechanically disordered alloy powders were characterized by X-ray diffraction, scanning electron microscopy, electron probe microanalysis, transmission electron microscopy, differential thermal analysis, differential scanning calorimetry and chemical analysis. The results have shown that the crystal-to amorphous transformation in the MD process occurs through one stage, while the crystallineto-amorphous formation in the MA process occurs through three stages. At the early and intermediate stages of the MA time, heating the alloy powders to 700 K leads to the formation of an amorphous phase by a solid-state amorphizing reaction. At the final stage of the MA time, the amorphous phase is crystallized through a single sharp exothermic peak. Contrary to this, amorphous alloy powders produced by MD are crystallized through two broad exothermic peaks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号