首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
利用Gleeble-1500热模拟实验机研究Q235钢连铸坯CSP轧制时在高温变形过程中的动态再结晶行为。结果表明,在高变形温度和低应变速率条件下Q235钢易发生动态再结晶;在回归相应的数学模型后,建立了Q235钢的热变形方程式。对Q235钢连铸坯热变形后的组织进行分析,发现奥氏体发生动态回复后转变的铁素体组织中也有动态再结晶晶粒。  相似文献   

2.
《包头钢铁学院学报》2005,24(2):132-132
高温连铸坯的生产是实现热送热装和直接轧制的基础。高温连铸坯的生产技术就是保证连铸坯质量和提高连铸机生产效率的同时,最大限度地减少连铸坯热量损失,提高连铸坯出坯温度,实现高温连铸坯热送热装和直接轧制的目的。连铸机只有在高拉速的情况下才能适应热送热装和直接轧制工艺的生产节奏,并最大限度地保证连铸坯温度。因此,保证高温连铸坯生产的技术,最重要的是高拉速和高拉速条件下的弱冷却技术。  相似文献   

3.
《包头钢铁学院学报》2008,27(3):278-278
不同类型的热送热装工艺,改变了连铸坯在装炉、轧制前的热履历.而连铸坯热履历的变化,又会影响轧制过程中产品的质量.因此,必须开发出能适应不同连铸坯热履历的轧制技术.这就必须清楚了解以下几个因素:一是连铸坯不同热履历对奥氏体晶粒度的影响,二是连铸坯不同热履历对微合金元素析出行为的影响,三是热脆现象的形成机理.  相似文献   

4.
为减少采用CSP工艺生产的Q235B热轧带钢边部裂纹缺陷,分别在Q235 B连铸坯和热轧带钢裂纹处进行取样,通过宏观形貌、金相组织、扫描电镜及能谱分析等方法,研究铸坯角部横裂纹与热轧带钢边部裂纹的演变规律和形态变化. 结果表明,结晶器卷渣、冷却不均匀是产生连铸坯角部裂纹的主要原因;第2道次过渡带钢的金相组织中出现混晶现象,裂纹边上存在脱碳现象;热轧带钢边部裂纹主要源自于铸坯裂纹,并在轧制过程中得到扩展. 根据连铸工艺参数,对边部裂纹缺陷率与液渣层厚度、保护渣消耗量、结晶器振动参数、中间包过热度、结晶器传热参数以及铸坯宽度的关系进行统计分析,并提出相应的边部裂纹控制工艺措施.  相似文献   

5.
连铸板坯辊道输送和保温过程传热模型   总被引:3,自引:0,他引:3  
建立了连铸板坯辊道输送和保温坑保温过程传热数学模型,并用实测数据对计算结果进行了验证。证明模型可用于预报铸坯在输送及保温过程中的温度变化,及制定连铸坯“传搁时间表”,为连铸板坯热送热装炉提供温度查询依据。  相似文献   

6.
通过热模拟试验对中温压力容器钢12CrMo连铸坯的高温塑性进行研究。在不同的变形温度下采用10-3s-1的应变速率对试样进行拉伸变形,测量拉伸断口的面缩率,并对拉伸断口的显微组织和析出物进行分析。结果表明,当变形温度高于900℃时,试样在拉伸过程中发生动态再结晶,其面缩率大于85%,表现出优良的高温塑性;当变形温度为850℃时,有大量细小的AlN在12CrMo钢中弥散析出,其尺寸约为10 nm;当变形温度降至800℃时,大量的先共析铁素体沿奥氏体晶界析出,形成网状结构,试样面缩率降至36%,12CrMo钢的高温塑性显著下降。  相似文献   

7.
采用箱式电阻炉对T91钢进行冷却实验,研究T91钢连铸坯和轧制坯冷却过程中原始组织形态和冷却速度对其相变组织和临界冷却速度的影响。结果显示:T91钢坯冷却过程中只有铁素体和马氏体转变,并且原始组织状态对临界冷却速度的影响不同,细小均匀的组织将增大临界冷却速度;T91钢连铸坯连续冷却过程中,当冷却速度在8℃/min以上时全部为马氏体组织,冷却速度为3~7℃/min时为铁素体和马氏体混合组织,冷却速度在2℃/min以下时几乎是铁素体组织;T91钢轧制坯连续冷却过程中,冷却速度在10℃/min以上时组织全部为马氏体,冷却速度为4~9℃/min时为铁素体和马氏体混合组织,冷却速度在3℃/min以下时组织几乎为铁素体。  相似文献   

8.
针对大直径车轮轧制难度大、待热时间长的问题,对圆坯在环形加热炉中进行温度实测及有限元分析,改进大规格圆坯的加热制度.环形加热炉预热段温度控制在950~1200℃,加热1段控制在1 200~1 300℃,加热2段控制在1260~1310℃,均热段控制在1 250~1 280℃.实践证明在优化加热制度下,轧制待热时间缩短,...  相似文献   

9.
通过对结构钢S650MC连铸坯缓冷工艺产生的边部裂纹问题进行分析,表明部分铸坯在堆垛缓冷过程中,由于铸坯边部冷却过快,产生细小裂纹,在加热过程进一步扩展;同时,针对边部裂纹的改善,进行了热装工艺与堆垛缓冷工艺的对比试验,试验结果显示,S650MC铸坯采用在450℃以上热装工艺入炉加热,连铸坯表面裂纹缺陷得到明显改善,连铸坯的烧损降低,提高了成材率,成品卷板的组织、性能指标均满足设计要求。  相似文献   

10.
本文采用AZ31镁合金轧制弱织构板材进行热拉伸行为研究。使用Gleeble-3500型热模拟试验机,在变形温度为300℃~420℃、应变速率为0.001 s-1~1.0 s-1的条件下,进行高温拉伸试验,研究了变形参数对真实应力-应变曲线和样品微观组织的影响。同时,利用Arrhenius本构模型建立了本构方程,并依据试验结果绘制了热加工图。结果表明:合金的峰值应力和对应应变值随着温度的升高和应变速率的降低而不断减小。随着温度的升高,动态再结晶晶粒的体积分数明显减小,合金平均晶粒尺寸变大。当应变速率为0.1 s-1,同时在低温(300℃, 340℃)时,合金发生完全动态再结晶,晶粒细小且分布均匀。另外,镁合金轧制弱织构板材的激活能Q为170.98 kJ/mol,且最佳热变形区域为变形温度300℃~350℃及应变速率0.01 s-1~0.1 s-1。  相似文献   

11.
为了研究镁合金在高温、高应变速率下的变形行为及失效机制,采用分离式Hopkinson压杆在应变速率为1 600~4 500 s-1、温度为27~150 ℃范围内,对真空压铸AM60B镁合金进行了动态压缩实验,并采用金相显微镜和扫描电子显微镜对压缩后的组织进行了观察.结果表明:在所测试的应变范围内,随着应变率的提高,应力-应变曲线均呈现上升趋势,且最大应变也随之增加,表现出正应变率强化效应.在150 ℃时真空压铸AM60B镁合金变形能力最好; 50 ℃时断裂强度最高.真空压铸AM60B镁合金在高温及高应变率下的断裂方式为以解理断裂为主并伴有韧性断裂的混合断裂方式.当变形温度低于150 ℃时,真空压铸AM60B镁合金在高应变率压缩下的变形机制主要是滑移.  相似文献   

12.
4145H钢是石油钻铤用钢,对钢水纯净度、非金属夹杂物含量、钢材的晶粒度、中心碳偏析等指标要求严格。采用电炉连铸工艺开展了4145H钻铤用钢的制备研究。结果表明,化学成分调整合格后,连铸过热度为25—35℃、铸速为0.4~0.6m/min、冷却水量为180m3/h时可以拉出280mm×280mm合格方坯。当加热炉出炉温度1160~1170℃、入轧温度965—975℃、缓冷时间46h、出坑温度100~150℃时,可以获得质量合格的西130的4145H轧制材。  相似文献   

13.
运用ProCAST软件对Q345钢凝固过程进行数值模拟.铸坯中心等轴晶率模拟结果与工业试验用钢检测结果相一致,同时应用CAFE机理研究了过热度对Q345钢铸坯凝固组织的影响及规律。结果表明,过热度对凝固组织结构影响较大,晶粒平均半径由75℃的0.231 mm降低到15℃的0.191 mm。因此,实际生产过程中,在保证钢液顺利浇注的情况下,综合考虑铸坯质量与生产顺利,过热度需控制在15℃左右为宜。  相似文献   

14.
针对连铸小方坯的中心疏松等质量缺陷,建立了凝固传热数学模型,以研究二冷强度对连铸小方坯凝固过程的影响规律,优化二冷制度,改善铸坯质量.本文基于射钉和测温实验所建立的小方坯凝固传热模型精细度较高,用此模型深入研究二冷喷嘴的数量和喷射范围对小方坯凝固传热的影响;经验证,模拟结果与实测结果误差在1.7%以内.利用该模型定量分析了二冷强度对铸坯温度,凝固坯壳厚度和凝固终点的影响规律.结果表明,随着二冷强度的增大,二冷区内的铸坯表面中心温度降低,而进入空冷区后则逐渐趋于一致.二冷强度每增加10%,足辊段出口处温度平均降低8℃,二冷一段出口处温度平均降低10.75℃,二冷二段出口处温度平均降低10.75℃,二冷三段出口处温度平均降低9.75℃,铸坯凝固终点缩短约0.168m.  相似文献   

15.
采用近液相线半连续铸造方法制备了Al-1.2Mg-0.8Si-0.4Cu合金半固态锭坯,研究了浇注温度和铸造速度对锭坯微观组织的影响.合金熔体在750℃下浇注,组织不均匀,边部是细小的晶粒,1/2半径和中心部位是粗大的枝晶,最小晶粒直径25μm,最大晶粒直径达220μm;660℃保温后浇注,可以获得适合半固态加工的均匀、细小的近球形组织,锭坯中心和边部组织差异小,平均晶粒尺寸为36.5μm;铸造速度达150 mm/min时有利于均匀、细小的近球形组织形成.结果表明,对于Al-1.2Mg-0.8Si-0.4Cu铝合金采用近液相线半连续铸造可以获得理想的半固态浆料.  相似文献   

16.
输电线铁塔钢材的低温力学和冲击韧性试验   总被引:1,自引:0,他引:1  
为选择合适的输电线铁塔钢材,防止杆塔因构件发生低温脆性断裂引起的破坏,通过系列室温和低温条件下的单轴拉伸和冲击试验,研究了输电线铁塔用Q345B、Q420B、Q460C钢管和Q345B、Q420B角钢钢材的力学性能和冲击韧性;通过对比分析,评价了钢管和角钢钢材的塑性指标;利用Boltzmann函数曲线拟合,得到了钢管和角钢钢材的韧-脆转变温度.结果表明:钢材的屈服强度和抗拉强度随温度的降低而增大,其塑性指标均能满足规范要求;钢材夏比冲击功值随温度降低而减小,Q345B钢管和角钢钢材的韧脆转变温度较高,抗低温冷脆性能较差,结合拉伸和冲击试验结果,建议在寒冷地区优先采用Q420B钢管,不宜采用Q345B角钢.  相似文献   

17.
选用不同的工艺参数对变形镁合金AZ80进行管材热挤压工艺实验研究;对挤压前后材料组织与力学性能的变化进行分析。研究结果表明:热挤压可以显著细化AZ80镁合金的晶粒,而且随着挤压比的增加,晶粒变得更加细小;增大挤压比也可以提高AZ80镁合金的抗拉强度和屈服强度。挤压比为18.2,坯料温度为390℃,模具预热温度360℃,凹模的半模角为60°~70°,可得到均匀的合金组织和良好的力学性能.  相似文献   

18.
A coupled mathematical model was established to simulate the whole solidification process of round billet continuous casting for wheel steel using piecewise linear functions of heat flux density in the mold, the secondary cooling zone and the withdrawing-straightening zone. The calculated results were consistent with the measured data showing that the model accords with the practice. The surface temperature and the solidified shell thickness of round billets are more strongly influenced by casting speed than by casting temperature. The holding zones have effect on surface temperature, which is more obvious for the 450 mm round billet. The relation between casting temperature/speed and solidification end is expressed as a linear function. The solidification end is located after straightening machine.  相似文献   

19.
Two-dimensional (2D) transient coupled finite element model was developed to compute the temperature and stress field in cast billets, so as to predict the defects of the I-type billets made from AZ31 magnesium alloy and find the causes and solutions for surface cracks and shrinkages during direct-chill (DC) casting process. Method of equivalent specific heat was used in the heat conduction equation. The boundary and initial conditions used for primary and secondary cooling were elucidated on the basis of the heat transfer during the solidification of the billet. The temperature and the thermal-stress fields were simulated with the thermal-structural coupled module of ANSYS software. The influences of casting parameters on the distributions of temperature and stress were studied, which helped optimize the parameters (at pouring temperature of 680 °C, casting speed of 2 mm/s, heat-transfer coefficient of the second cooling equals to 5 000 W/m2·°C−1). The simulation results of thermal stress and strain fields reveal the formation mechanism of some casting defects, which is favourable for optimizing the casting parameters and obtain high quality billets. Some measures of controlling processes were taken to prevent the defects for direct-chill casting billets. Funded by the 973 National Grand Theoretical Research Program(No. 2007CB613700), the National Sci&Tech Support Program(No. 2007BAG06B04), National Natural Science Foundation of China (No. 50725413), and the Natural Science Foundation of Chongqing(No. CST, 2007bb4413)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号