首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of the sintering temperature (1100–1400°C) of NiAl alloy samples with oxide Y2O3 produced by hydrostatic pressing on their structure and phase composition and the distribution of oxide particles in a NiAl-based intermetallic matrix alloyed with ~0.5 at % Fe is considered. It is found that dispersed oxide particles in the compact material prepared from a mixture of oxide Y2O3 powder and a NiAl alloy (produced by calcium hydride reduction of a mixture of nickel and aluminum oxides) powder in a standard ball mill are nonuniformly distributed in the volume. The morphology of oxides changes during sintering: sintered samples contain rounded particles, which differ strongly from the clearly faceted angular particles of oxide Y2O3 added to a mixture (they represent conglomerates of single crystals). In the sintered samples, large aggregates of oxides are revealed along grain boundaries. Mass transfer is possible at the NiAl/Y2O3 interface in the system: it leads to partial substitution of aluminum and/or iron atoms for yttrium atoms in the Y2O3 lattice and to the formation of submicroscopic particles of (Fe,Al)5Y3O12-type oxides.  相似文献   

2.
Hydrostatic pressing of mechanically activated calcium hydride reduction (CHR) powders of plain intermetallic compound NiAl is used to fabricate parts of a complex shape that have a density and strength that allow the application of mechanical processing. The sections of a nozzle blade from an aviation gas turbine engine are produced from mechanically activated CHR mixtures of NiAl-2.5% Y2O3 powders by isothermal forging.  相似文献   

3.
采用粉末冶金方法制备含Y2O3的稀土钼合金,利用金相显微镜、扫描电子显微镜(SEM)、X射线衍射(XRD)、能谱分析(EDS)等手段对钼合金的断裂特征和组织结构进行对比分析,研究稀土氧化物Y2O3含量对钼合金组织和性能的影响.研究表明:添加Y2O3能细化晶粒、改善钼合金的晶粒均匀性和致密度、提高钼合金的性能:拉伸强度和屈服强度随Y2O3含量的增加呈现先增高后降低的趋势,在Y2O3含量为1%时,抗拉强度达511.43MPa,屈服强度456.99MPa,分别是纯钼材料的1.31倍和1.57倍,综合力学性能最佳;在烧结坯中,Y2O3颗粒分布均匀,主要以球形和等轴状形式存在于晶界上.  相似文献   

4.
The effects of Y2O3 and Sm2O3 doping on the sintering temperature, microstructure and mechanical behaviors of Al2O3 ceramics were investigated. The experimental results show that the sintering temperature can be decreased and the mechanical behavior can be improved by adding rare earth in alumina ceramics. The relative density of rare-earthdoped alumina ceramics reaches 98.8% after sintering at 1600 ℃ for 2 h, and its bending strength and fracture toughness reach 439 MPa and 5.28 MPa·m1/2,respectively.Introduction of Y2O3 and Sm2O3 in Al2O3 can restrain the growth of grains, refine the size of grains, and thus form a fine-grained structure. The fracture characteristic is the mixed modes of intergranular and transgranular fracture.  相似文献   

5.
The effects of two types of additives, Y2O3 and Dy2O3, on the sintering and mechanical behaviors of AlN ceramics were investigated. The experimental results show that the sintering temperature can be decreased and the mechanical behavior can be improved by adding rare earth in AlN ceramics. The strength of AlN ceramics with Y2O3 and Dy2O3 are 326 and 320 MPa, respectively, which are 97.6% and 93.9% higher than the un-doped AlN ceramics. The fracture behavior on the fracture surfaces of rare earth oxide AlN ceramics was found to be a mixed mode of transgranular fracture and intergranular fracture. As a result, it is concluded that the improvement of bending strength of AlN ceramics with Y2O3 and Dy2O3 addition are mainly achieved by strengthening the grain boundary.  相似文献   

6.
7.
The effect of recrystallization annealing of various sections produced by twofold extrusion with a total reduction λ = 28 and blade profiles produced by isothermal stamping on the formation of a directional structure with a low fraction of transverse boundaries has been studied in NiAl-Y2O3 (2.5 and 7.5 vol %) alloys. Annealing at temperatures of (0.89–0.95)T m of NiAl is performed under isothermal conditions or in a temperature field with a temperature gradient along the product length. It is shown that Y2O3 particles of irregular shapes introduced during mechanical activation into the NiAl powder prepared by hydride-calcium reduction take a rounded shape during deformation and heat treatment. As a result of mechanical activation, extrusion, and subsequent directional recrystallization (DR), complex oxides form. The crystallographic texture of the extruded and recrystallized rods and profiles is studied. It is shown that hot extrusion and subsequent DR result in the formation of a quasi-single-crystal structure in a NiAl matrix with coarse elongated recrystallized grains.  相似文献   

8.
Forlongthebrittlenessofceramicmaterialshasstoodinthewayofindustrialapplicationanddevelop ment.However ,inrecentyears ,suchprogressasthephasetransformationtougheningofzirconia ,thedis persionofparticletougheningandthefiberorwhiskertougheninghavewellimprove…  相似文献   

9.
Y2O3对金属基陶瓷内衬显微组织和力学性能的影响   总被引:2,自引:0,他引:2  
陈林  徐舰 《稀土》2003,24(5):50-51
研究了稀土钇对提高陶瓷复合钢管的表面质量和力学性能的影响。结果表明,加入0.5%(质量分数)的Y_2O_3和2%的SiO_2对改善陶瓷表面质量和提高其力学性能有较好效果。  相似文献   

10.
Tiny amount of rare earth Y2O3 can restrain the growth of grains and broaden the peak of BaTiO3 ceramics.Proper characteristics of capacitance change with temperature were obtained. Meanwhile, the insulation resistance increased with the increasing contents of Y2O3. In this system, the cooperation of Y2O3 with Ho2O3 was also discussed.It is concluded that the insulation resistivity reduces if the content of Y2 O3 is below 0.25 %. With the increasing content of additives, weak-binding electrons in grains will be compensated by V"8a so the insulation resistivity increased. The breakdown voltage is enhanced to 15 kV · mm-1.  相似文献   

11.
12.
Powder aluminum-phosphorus master alloys for modifying hypereutectic silumins are developed. Optimal treatment modes of powder mixtures in a high-energy planetary mill which give minimal losses of the starting material and the microstructure with the uniform and dispersed distribution of particles of excess phases in the aluminum matrix are selected. The phase composition of formed master alloys is investigated by electron probe microanalysis. The high efficiency of modifying the hypereutectic silumin Al-17 wt % Si by introducing phosphorus (0.008 wt %) using fabricated master alloys is shown.  相似文献   

13.
14.
研究了钇、镧等添加物对金属陶瓷内衬显微硬度和耐蚀性的影响。结果表明:加入Y2O3、L a2O3和S iO2可使陶瓷层的孔隙度降低,一定程度上使耐蚀性增加。L a2O3对提高陶瓷层性能的效果比Y2O3要好。  相似文献   

15.
16.
17.
Upconversion properties of Y2O3:Er films prepared by sol-gel method   总被引:2,自引:1,他引:1  
Y2O3:Er3+ films were prepared by a simple sol-gel process. The structural properties of Y2O3:Er3+ flints were characterized with X-ray diffraction, Fourier transform infrared spectroscopy and field emission scanning electron microscopy. The results indicated that the Y2O3:Er3+ f'rims might have high upconversion efficiency because of their low vibrational energy. Under 785 and 980 nm laser excitation, the samples showed green (2H11/2→4I15/2, 4S3/2→4I15/2) and red (4F9/2→4I15/2) upconversion emissions. The upconversion mechanisms were stud-led in detail through laser power dependence. Excited state absorption and energy transfer process were discussed as possible upconversion mechanisms. The cross relaxation process in Er3+ was also investigated.  相似文献   

18.
使用真空电弧炉熔炼合成了添加x% Y2O3(x=0.05,0.08,0.1,x为质量分数)的碳锰钢,利用电化学阻抗频谱(EIS)、金相显微镜研究了添加Y2 O3的碳锰钢在3.5% NaCl溶液中的腐蚀行为.结果表明,氧化钇能提高碳锰钢的耐蚀性能,添加氧化钇所引起的钢中夹杂物形态变化和阻断晶界网状结构是导致耐蚀性变化的主要原因.  相似文献   

19.
The mechanical properties of NiAl-Y2O3-based powdered composite alloys (0.5–7.5 vol %), including those with an NiAl intermetallic matrix alloyed with 0.5 wt % Fe and 0.1 wt % La have been studied. Structures with various aspect ratios (AR, the ratio of the grain length to the grain diameter) are formed using deformation and subsequent annealing. A combination of the optimum amount of strengthening phase (2.5 vol % Y2O3) and a quasi-single-crystalline structure with a sharp axial texture with the (100) main orientation and AR ≈ 20–40 provides the maximum short-term strength and life at temperatures up to 1400–1500°C. An NiAl-Y2O3 alloy (2.5 vol %) has the best strength properties among all known nickel superalloys at temperatures higher than 1200°C and can operate under moderate loads at temperatures higher than the working temperatures of nickel superalloys (by 100–400°C) and their melting points. Additional alloying with 10 wt % Co and 2 wt % Nb makes it possible to increase the ultimate tensile strength of an intermetallic NiAl matrix at 1100°C by a factor of 1.3–1.4.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号