首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
本文探讨了三种还原法(H2还原法、KBH4还原法、乙醇还原法)对CO2加氢合成甲醇Cu/ZnO催化剂结构及CO2加氢合成甲醇活性的影响。实验结果表明:催化剂经KBH4还原后,部分铜物种被还原成金属铜,同时带入了K ,对CO2加氢合成甲醇反应影响很大;催化剂经高压釜乙醇处理后,铜物种全部被还原成金属铜,且晶粒很大,在ZnO上分散性差,对CO2加氢合成甲醇反应影响很大;催化剂经3%H2+N2还原后,铜在ZnO上分散性较好,有利于CO2加氢合成甲醇反应。  相似文献   

2.
利用浸渍法制备系列负载型Fe-Cu-K-Ce催化剂,并用其进行了CO2加氢合成低碳烯烃研究。考察了不同的载体,载体上活性组分Fe、Cu、K、Ce负载量,焙烧温度,以及反应温度、空速、压力等工艺条件对催化剂活性的影响。结果表明,以MgO-ZSM-5为载体,w(Fe)为15%,且活性组分n(Fe)∶n(Cu)∶n(K)∶n(Ce)为100∶20∶8∶8,在773K下空气中焙烧制得的催化剂在623K、1.0MPa、空速1200h-1反应条件下活性最高,此时CO2转化率可达60%以上,低碳烯烃选择性可达20%以上。对催化剂进行了CO2-TPD、XRD和TEM表征分析。  相似文献   

3.
<正>美国海军研究实验室(NRL)的研究人员正在优化将CO2和H2合成喷气燃料的两步工艺。在将CO2加氢制烯烃过程中,通过在Al2O3催化剂上用硅酸四乙酯(TEOS)浸渍K?Mn?Fe引入稳定剂进行改性,以尽量减少水在CO2加氢催化剂上的失活效应。与在H2中对该催化剂进行还原处理相比,在CO中对该催化剂进行还原处理将导致生成更多较轻质的烯烃。工艺的第二步是将生成的不饱和烃通过齐聚合成喷气燃料。据称,采用负载  相似文献   

4.
在不同的焙烧温度下制备了Fe-Mn沉淀型催化剂,以CO加氢合成低碳烯烃为模型反应在固定床反应器上对催化剂的反应性能进行了考察,并借助X射线物相分析、N2物理吸附、程序升温还原等表征手段对催化剂进行了表征。实验结果表明,随着焙烧温度的升高,催化剂中α-Fe2O3晶粒增大,催化剂比表面积减小。在CO加氢反应中,焙烧温度的升高明显地提高了催化剂的运行稳定性,降低了CH4的选择性,促进了链增长。450℃条件下焙烧的催化剂烯烃选择性最高,有较高的低碳烯烃收率。  相似文献   

5.
在浆态床反应器中,对Fe-Mn催化剂上CO加氢合成低碳烯烃的反应性能进行了研究,考察了不同温度、空速和压力下Fe-Mn催化剂的催化性能,并借助XRD和N2物理吸附等手段对催化剂进行了表征。实验结果表明,Fe-Mn催化剂在运行300h后达到稳定运行状态。反应参数的适当调变,可有效提高Fe-Mn催化剂的活性和低碳烯烃收率,并使产物分布得到优化。在n(H2)∶n(CO)=2、320℃、2.0 MPa、合成气空速1 000 h-1的条件下,CO转化率83.10%,CH4选择性11.88%,C5+烃选择性39.06%,C2~4烃中烯烃与烷烃的质量比3.59,低碳烯烃收率38.50 g/m3(基于H2与CO的总体积)。  相似文献   

6.
将放大制备的原颗粒K-Fe-MnO/Silicalite-2催化剂在单管扩大试验装置上进行CO加氢制低碳烯烃反应,可达到CO转化率70%~90%、C_2~C_4烯烃选择性72%~74%的反应结果,并具有很好的稳定性和单程操作寿命;研究单管扩大试验工艺参数对该催化剂CO加氢制低碳烯烃性能的影响。结果表明,该催化剂可适合于较宽的反应工艺条件范围。反应温度、压力、空速的变化对催化剂CO加氢反应制低碳烯烃选择性的影响较温和;考察了催化剂的单程运转寿命,并进行了单管试验物料平衡计算,取得一些关键性数据,表明在反应尾气不循环的情况下,1m~3(STP,下同)(H_2/CO=2:1)的合成气可转化为68.1gC_2~C_4烯烃,如将未转化的CO和H_2进行循环反应即可生成高达86.6g的低碳烯烃。  相似文献   

7.
研究开发了一种具有高催化活性和高低碳烯烃选择性的K-Fe-MnO/Si-2担载型催化剂;考察了V(CO2)/V(H2)比、反应温度、反应气空速和反应压力对K-Fe-MnO/Si-2催化剂CO2加氢反应制低碳烯烃选择性及催化活性的影响;考察催化剂稳定性及再生性能,对催化剂进行差热-热重分析结果表明,K-Fe-MnO/Si-2催化剂具有很好的催化稳定性能。  相似文献   

8.
万华  王黎  张占涛  孙雪莲 《石油化工》2005,34(7):637-642
对CO2加氢合成C1~C5醇反应体系进行了热力学分析。反应体系中各独立反应的吉布斯自由能变化分析表明,较低的反应温度对C1~C5醇的生成有利。采用最小G值法计算得到不同温度、压力、进料氢与CO2摩尔比下体系的平衡组成、醇的平衡收率及CO2和H2的平衡转化率,并讨论了反应条件对反应的影响。此热力学分析可以为评价C1~C5醇合成催化剂的催化效果以及确定CO2加氢合成C1~C5醇的工艺条件提供重要依据。  相似文献   

9.
CO/CO2催化加氢制高附加值化学品是降低石油资源依赖、实现碳减排的有效途径。近年来国内外科学家致力于开发新型双功能催化剂,将传统F-T合成催化剂或甲醇合成催化剂分别与H-ZSM-5、SAPO-34等酸性分子筛耦合,实现了CO/CO2催化加氢一步制低碳烯烃、汽油、芳烃等化学品。围绕耦合不同反应,设计高效双功能催化剂,调控产物分布是碳一资源化学利用的关键。综述了“氧化物-分子筛”双功能催化剂发展近况,不同活性组分组合方式、空间距离对CO/CO2选择转化制高附加值化学品反应性能的影响,展望了双功能催化剂发展方向。  相似文献   

10.
铁是CO2加氢制低碳烯烃的催化剂活性组,其含量的增加将明显提高CO2转化率和反应产物中烃类摩分离;MnO是Fe/Si-2催化剂CO2加氢制低碳烯烃的有效助剂,提高MnO含量,有利于提高CO2加氢制低碳烯烃的选择性,尤其可明显提高烃类产物中的烯、烷比值。  相似文献   

11.
介绍了碳二加氢反应的原理,从反应物转化量与反应热生成量的关系入手,找出催化剂选择性与床层温差和进料乙炔含量的定量关系,建立了一种碳二加氢催化剂选择性的快速评价方法,并用此法对三种催化剂的选择性进行了评价,评价结果与实际情况吻合。  相似文献   

12.
乙炔加氢制乙烯高选择性催化剂的研究   总被引:2,自引:0,他引:2  
研究了乙炔加氢制乙烯Pd/Al_2O_3催化剂钯含量及助剂与起始反应温度及反应温度、加氢活性和选择性之间的关系.在此基础上研制出高选择性(≥98%)的CHC-1型催化剂.500h连续实验结果表明:其活性、选择性均稳定.  相似文献   

13.
浸渍溶剂对Rh-Mn-Li/SiO_2催化剂CO加氢性能的影响   总被引:1,自引:1,他引:0  
采用CO加氢反应、CO-TPD、TPSR和XPS等技术,考察了水、甲醇、乙醇和异丙醇等浸渍溶剂对Rh-Mn-Li/S iO2催化剂CO加氢性能的影响。结果表明,以乙醇为浸渍溶剂的催化剂表现出最高的C2含氧化合物时空收率(YC2-oxy)和C2含氧化合物选择性(SC2-oxy),分别达686.1 g/(kg-cat.h)和73.8%;以甲醇和异丙醇为浸渍溶剂的催化剂上YC2-oxy也较高,但是SC2-oxy都比前者低;水溶液浸渍制备的催化剂有着较高的SC2-oxy,但是其YC2-oxy较低。以醇类为浸渍溶剂的催化剂的高活性与金属活性组分在催化剂表面富集而导致的更多活性中心的形成有关。催化剂表面非解离的CO比率增加有利于C2含氧化合物选择性的提高。  相似文献   

14.
催化加氢是提高C9石油树脂产品质量的有效手段。本文采用程序升温还原法(TPR法)制备了Ni2P/SiO2催化剂并应用于C9石油树脂加氢反应中,考察了温度、压力、液时空速的影响。结果表明,该体系的最佳反应条件分别为:250℃, 6 MPa, 和1 h-1。其中,加氢产物可以在300小时内保持较低溴值(~250 mgBr/100g),表明Ni2P/SiO2催化剂具有高活性和稳定性。随后,采用XRD、BET、SEM、TEM和红外—吡啶吸附等手段对反应前后催化剂进行表征,以考察其高活性和稳定性的原因。结果表明,相比于NiWS的层状结构,Ni2P是类球形结构,使其暴露出更多的活性位,这可能是Ni2P具有高活性的原因。Ni2P/SiO2催化剂具有高稳定性可能由于Ni2P具有抗硫、抗烧结、抗结焦和抗积碳的性能,这些性能又进一步归因于Ni2P在含硫杂质下可能形成Ni-P-S晶相,Ni2P纳米颗粒具有高热稳定性以及Ni2P催化剂表面弱酸性。  相似文献   

15.
 以对水稳定的N(C2H5)3HCl-2ZnCl2离子液体作主催化剂、阳离子双子表面活性剂Gm-s-m (m是亲油基尾链长度, s是连接基长度)作相转移催化剂,合成了十二烷基苄基氯。在反应温度55℃、物料配比n(十二烷基苯): n(多聚甲醛) : n(氯化锌) : n(Gm-s-m) =1: 3: 1.6: 0.01的条件下反应10 h,十二烷基苄基氯的选择性达98%以上。在几种相转移催化剂中,G12-6-12的催化性能最好。结果表明,使用N(C2H5)3HCl-2ZnCl2离子液体作催化剂,可以缩短反应时间,提高产物的收率和选择性。  相似文献   

16.
研究了Mo/HZSM 5催化剂的Mo载量、焙烧时间、焙烧温度、焙烧和处理气氛以及V等助剂改性对甲烷无氧偶联反应性能的影响。用2%V改性的Mo/HZSM 5催化剂,CH4转化率最高(2501%),C2选择性为9794%,C2收率约245%  相似文献   

17.
微波等离子体下甲烷脱氢偶联制C2烃   总被引:1,自引:0,他引:1  
在微波等离子体下,研究了甲烷以及甲烷和水脱氢偶联制C2烃的反应,对影响甲烷转化率和产物选择性的几个因素(微波输入功率、反应物的比例)进行了研究。在甲烷体系中,随着微波输入功率的增加和体系压力的降低,甲烷的转化率和乙炔的选择性都增大;乙烷的选择性则降低;乙烯的选择性随体系压力的增大而增大,随功率的增大出现极大值。在甲烷和水体系中,随着微波输入功率的增加,甲烷的转化率和乙炔的选择性随着增大;乙烷的选择  相似文献   

18.
采用浸渍法和程序升温法,以正己烷为碳源,制备了β-Mo2C(20%,质量分数)/SAPO-11催化剂。XRD,BET,FTIR分析结果显示,β-Mo2C结晶良好,具有合适的孔体积和孔径。以正十二烷为原料,在连续流动的固定床反应装置上,通过改变温度、压力、体积空速以及氢烃体积比等参数,考察该催化剂的异构化反应性能。结果表明,β-Mo2C(20%)/SAPO-11上的正十二烷异构化优化反应条件为:反应温度400℃,反应压力3.0MPa,体积空速1.0h-1,氢烃体积比400。在此条件下的正十二烷转化率达到80.2%,异构化选择性和异构体收率分别为70%和57%左右。  相似文献   

19.
首次采用烯烃氢酯基化反应一步生成C7~C9脂肪酸甲酯,然后皂化水解制得C7~C9脂肪族羧酸。主要考察了烯烃羰化的各项制约因素,如:催化剂体系、反应温度、反应压力及时间的影响。同时针对水解条件进行了初步探讨。实验表明在所考察范围内的最佳条件下,烯烃的转化率达到82.1%,C7~C9脂肪酸总收率约78%,具有一定的工业应用价值。  相似文献   

20.
首次采用烯烃氢酯基化反应一步生成 C7~ C9脂肪酸甲酯 ,然后皂化水解制得 C7~ C9脂肪族羧酸。主要考察了烯烃羰化的各项制约因素 ,如 :催化剂体系、反应温度、反应压力及时间的影响。同时针对水解条件进行了初步探讨。实验表明在所考察范围内的最佳条件下 ,烯烃的转化率达到 82 .1 % ,C7~ C9脂肪酸总收率约78% ,具有一定的工业应用价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号