首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Proteolysis during ripening of full-fat and low-fat Cheddar cheese was investigated by applying reverse-phase HPLC to the pH 4.6 water-soluble N fraction of cheese. The separated N compounds were divided into four MW ranges. The number of separated peaks and the amount of N compounds separated in each of the MW ranges increased with ripening time. Significant within-cheese, within-variety, and between-varieties differences in the amounts and proportions of N compounds with different MW were observed as related to ripening time. Reverse-phase HPLC of the pH 4.6 water-soluble N fraction of cheese can provide detailed quantitative information on proteolytic activities during ripening.  相似文献   

2.
Viscoelastic Property Changes in Cheddar Cheese During Ripening   总被引:2,自引:0,他引:2  
The rheological properties of pasteurized and raw milk Cheddar cheese were studied using oscillatory dynamic measurements, and a specially designed rheometer fixture that prevented specimen slippage. Dynamic measurements within the linear viscoelastic range were made throughout ripening. Within-cheese changes, as related to ripening time, as well as between-cheese-type differences in G’ and G” were observed. Differences in rheological characteristics were attributed to proteolytic activities in Cheddar cheese during ripening. Specific peptide profiles associated with proteolysis during ripening may affect cheese rheological properties.  相似文献   

3.
利用地衣芽孢杆菌凝乳酶制作切达干酪和切达干酪类似物,分析干酪成熟过程中各蛋白水解指标的变化规律,以揭示地衣芽孢杆菌凝乳酶对切达干酪成熟过程中蛋白水解的影响。结果表明,CDF组(添加地衣芽孢杆菌D3.11凝乳酶所制切达干酪)、CD3组(添加地衣芽孢杆菌D3.11凝乳酶但未添加发酵剂制成的干酪类似物)和CCF组(添加商品凝乳酶所制切达干酪)干酪蛋白含量、pH 4.6-可溶性氮、12%三氯乙酸-可溶性氮、5%磷钨酸-可溶性氮、总游离氨基酸含量均随着成熟时间延长呈显著增加趋势,并且成熟期间CDF组干酪均显著高于CCF组干酪(P<0.05);十二烷基硫酸钠-聚丙烯酰氨凝胶电泳分析表明,CDF组干酪α-酪蛋白水解程度较大;pH 4.6-可溶性肽段分析表明,随着干酪的成熟,总肽含量呈先增加后下降趋势,但疏水性肽与亲水性肽的比值呈持续下降趋势,在成熟第6个月时,CDF组、CD3组和CCF组干酪疏水性肽与亲水性肽比值分别为2.668、2.822、3.788。主成分分析表明,3 组干酪的蛋白水解程度与成熟度呈正相关,与疏水性肽和亲水性肽的比值呈负相关。以上结果表明,利用地衣芽孢杆菌凝乳酶制作的干酪蛋白水解度更高,但其疏水性肽比例较小,研究结果可为地衣芽孢杆菌凝乳酶在干酪生产中的应用提供理论依据。  相似文献   

4.
L. Ong    N.P. Shah 《Journal of food science》2009,74(5):S182-S191
ABSTRACT:  Bifidobacterium longum 1941, B. animalis subsp. lactis LAFTI® B94, Lactobacillus casei 279, Lb. casei LAFTI L26, Lb. acidophilus 4962, or Lb. acidophilus LAFTI L10 were used as an adjunct in the production of Cheddar cheeses, which were ripened at 4 and 8 °C for 24 wk. Effects of ripening temperatures and probiotic adjuncts on proteolysis and sensory evaluation of the cheeses were examined. Higher ripening temperature increased the level of proteolysis in the cheeses. Product of proteolysis and organic acids released during ripening were shown to be important for the flavor of Cheddar cheeses. There were positive and significant correlations between the levels of soluble nitrogen, lactic, acetic, and butyric acids, percentage hydrolysis of αs1-CN and β-CN to the scores of cheddary flavor ( P < 0.05). Scores for sour-acid and vinegary flavors were higher in cheeses with the addition of Bifidobacterium sp. or Lb. casei 279 ripened at 8 °C. The scores were positively and significantly correlated to the level of lactic, acetic, and free amino acids in the cheeses ( P < 0.05). The results show that both 4 and 8 °C have potential for use in the ripening of probiotic Cheddar cheeses.  相似文献   

5.
Cheddar cheese is a biochemically dynamic product that undergoes significant changes during ripening. Freshly made curds of various cheese varieties have bland and largely similar flavors and aroma and, during ripening, flavoring compounds are produced that are characteristic of each variety. The biochemical changes occurring during ripening are grouped into primary events including glycolysis, lipolysis, and proteolysis followed by secondary biochemical changes such as metabolism of fatty acids and amino acids which are important for the production of secondary metabolites, including a number of compounds necessary for flavor development. A key feature of cheese manufacture is the metabolism of lactose to lactate by selected cultures of lactic acid bacteria. The rate and extent of acidification influence the initial texture of the curd by controlling the rate of demineralization. The degree of lipolysis in cheese depends on the variety of cheese and may vary from slight to extensive; however, proteolysis is the most complex of the primary events during cheese ripening, especially in Cheddar-type cheese.  相似文献   

6.
尝试通过添加不同剂量的脂质体微胶囊化中性蛋白酶来加快Cheddar干酪的成熟;测定了不同成熟期内干酪的pH值、可溶性氮含量以及干酪的质构的变化,经过综合感官分析,确定了最适添加量。结果表明,添加脂质体微胶囊中性蛋白酶加快了干酪的成熟,其中,0.01%的添加量既加快了干酪成熟,又没有导致干酪在风味、质构等品质方面的缺陷。  相似文献   

7.
Applying water extracts from Cheddar cheese to an octadecyl vinyl alcohol copolymer column using a reliable auto-sampling system provided highly repeatable HPLC patterns. Two batches of standard samples of mild, medium, sharp, and extra-sharp and one batch of abused samples (rapidly aged under abnormal conditions) were analyzed. Principal component similarity (PCS) analysis indicated similar shifts of plots due to aging of the standard batches, while the plot for the abused batch deviated from the pathway of normal aging. PCS may be useful for analysis of accelerated ripening effects as well as finding unusual samples during quality control.  相似文献   

8.
Up to six-fold increase in plasmin activity in milk did not significantly (p<0.05) affect the composition (moisture, protein, NaCl) of cheese, although a slight increase in moisture and decrease in protein content of the cheese was noted. Proteolysis in cheese increased with plasmin activity, resulting in improved flavor and overall quality of the cheese after 3 and 6 months ripening. Consistently, increasing the plasmin activity in milk about three-fold resulted in cheese of superior sensory quality.  相似文献   

9.
Fat reduction in Cheddar cheese resulted in an increase in viscoelasticity as evidenced by increases in G’and G”. Proteolysis during ripening led to softening of all cheeses and thus decreases in G’and G” for cheeses containing 34, 27, and 20% fat. Cheese with 13% fat showed a decrease in G’upon ripening, but no change in G”. This lack of change in viscous behavior may be important to the texture of reduced-fat Cheddar cheese and overall acceptability. Dynamic rheological testing was helpful in understanding rheological behavior associated with fat reduction in cheese.  相似文献   

10.
Reduced-fat cheese showed higher levels of ethanol and lower acetoin than full-fat samples throughout ripening regardless of conditions. Total headspace volatiles, as well as butanoic and hexanoic acids, increased with ripening time and temperature. Full- and reduced-fat cheeses developed distinctly different headspace volatile profiles throughout ripening. The effects of ripening conditions were more notable in full-fat samples. Ripening reduced-fat Cheddar cheese at an elevated temperature for a limited time may enhance development of some desirable volatiles such as butanoic acid.  相似文献   

11.
以半硬质契达干酪为研究对象,对同一加工样品在9℃贮存成熟,分别对成熟期0、15、30、45、60、90、120、150、180 d的干酪样品进行了介电特性和成熟度指标的测定,包括干酪样品总氮(total nitrogen,TN)含量、p H 4.6可溶性氮(soluble nitrogen,SN)含量及三氯乙酸(trichloroacetic acid,TCA)溶液中SN含量的测定。测试频率选定为500、915、1 500、2 000 MHz,对测试结果进行了统计分析,建立了干酪介电特性与成熟度指标之间的相关性。结果表明:随着成熟期的延长,干酪水分含量略有减少、水分活度明显降低、p H值先降低后升高、成熟度指数p H 4.6-SN/TN和12%TCA-SN/TN均随成熟期延长而增大;介电常数ε’在所选的测试频率下与成熟期和成熟度指数的变化均呈线性相关关系;介电损耗因数ε’’在所选测试频率范围内,随成熟期的延长和成熟度的增大呈现总体下降趋势,与成熟期和成熟度在500 MHz和915 MHz频率条件下线性相关性极显著(P0.01),而在高频1 500 MHz和2 000 MHz条件下线性相关性不显著;损耗角正切值变化不明显,表明在测试频率范围介电常数ε’和介电损耗因数ε’’的变化方向一致,同时变化幅度相近。  相似文献   

12.
成熟温度和时间对Cheddar干酪成熟特性的影响研究   总被引:2,自引:2,他引:2  
通过对不同成熟参数下Cheddar干酪蛋白分解、质构、pH及感官评价的分析,探讨了成熟参数对Cheddar干酪的影响,并得出研究条件下的最优成熟温度和时间,分析了Cheddar干酪在成熟过程中的游离氨基酸变化情况。  相似文献   

13.
ABSTRACT: An aminopeptidase (AP) fraction from squid (Illex illecebrosus) hepatopancreas was added to Cheddar cheese at 2 levels, and its influence on ripening indices was determined for up to 3-mo storage at 11 °C. Two commercial enzymes (Neutrase ® and Flavourzyme ®) were similarly tested. Cheese with the higher level of squid AP contained more soluble N, amino acids, and Cheddar flavor after 1 mo, but it developed defects in texture and bitterness as ripening progressed. Cheese with less squid AP did not differ from the control with respect to all ripening indices over 3-mo storage. Ripening Cheddar contains cysteine protease inhibitor(s) that inhibit low levels of squid AP but not Neutrase ® and Flavourzyme ®.  相似文献   

14.
为确定益生菌对契达干酪抗氧化性变化的影响,在菌株具备良好耐酸、耐盐性,适用于干酪生产前提下,以水解性和抗氧化性为指标,分别筛选出水解能力和抗氧化能力较强的菌株,并将其添加到契达干酪中,不添加益生菌的干酪为空白组,对干酪成熟过程中活菌数和抗氧化性进行分析。结果表明,9?株益生菌中,瑞士乳杆菌(Lactobacillus helveticus)1.0612和鼠李糖乳杆菌(Lactobacillus rhamnosus)1.0911分别具有较强的水解能力和抗氧化能力。在成熟过程中,添加L. helveticus 1.0612和L. rhamnosus 1.0911的两组干酪活菌数无显著差异,但均显著高于空白组。3?组干酪抗氧化能力均先升高再降低、最后趋于平缓,1,1-二苯基-2-三硝基苯肼(1,1-diphenyl-2-picrylhydrazyl,DPPH)自由基和羟自由基清除能力均在第4个月达到最大,还原能力在第5个月达到最大,且添加水解能力强的L. helveticus 1.0612干酪各项抗氧化能力的最大值(DPPH自由基、羟自由基清除能力和还原能力分别为51.05%、49.97%、0.66)均显著高于添加L. rhamnosus 1.0911的干酪(47.30%、46.19%、0.56)(P<0.05)。因此,在契达干酪中添加水解能力较强的菌株,相比于添加本身具有良好抗氧化活性的菌株,可能会加剧干酪的蛋白水解,生成具有抗氧化能力的短肽和氨基酸,从而提高干酪的抗氧化活性。  相似文献   

15.
张娜  赵新淮 《食品科学》2010,31(15):149-158
从毛豆腐中分离出一株毛霉,并应用于表面成熟干酪,以研究干酪成熟过程中所发生的蛋白质水解作用。在90d 的成熟过程中,干酪的pH 值增加;蛋白质水解作用的评价指标,如干酪外层的水溶性氮- 总氮比、pH4.6水溶性氮- 总氮比、12g/100mL 三氯乙酸可溶性氮- 总氮比,在成熟90d 后分别增加至(23.68 ± 1.07)%、(19.38 ± 1.32)%和(8.61 ± 0.85)%,并且高于干酪的内部相应指标。SDS-PAGE 和毛细管电泳分析干酪的pH4.6 不溶性组分,结果表明酪蛋白在干酪成熟过程中被降解。对干酪成熟过程中分离出的水溶性组分进行RP-HPLC 分析,结果显示成熟过程中蛋白质被水解以及形成一些新肽分子。  相似文献   

16.
豆奶干酪成熟过程中蛋白水解的研究   总被引:4,自引:0,他引:4  
郑冬梅  张慧芸  孔保华 《食品科学》2004,25(10):101-102
本文主要研究了豆奶干酪成熟过程中蛋白水解的变化,并与纯牛乳干酪进行比较。结果表明:豆奶干酪中pH4.6 SN 和12%TCA SN随着时间的延长逐渐增高,而且pH4.6 SN的增长速度比12%TCA SN快,这与纯牛乳干酪是一致的,但豆奶干酪的可溶性氮低于同一时期的纯牛乳干酪。  相似文献   

17.
18.
High hydrostatic pressurization is proposed for cheese ripening acceleration. Several treatments were used for accelerating ripening of goat's milk cheese: 50 MPa / 72 h, 400 MPa / 5 min and 400 MPa / 5 min followed by 50 MPa / 72 h all at 14 °C. Moisture content and pH were higher in 400 MPa treatments compared to the others. By measuring proteolysis indexes, 400 MPa treatments were found to accelerate ripening (14 d in contrast to 28 d conventionally) due to enhanced enzyme activity from inoculated starter culture. Sensory analysis indicated bitter notes in the accelerated ripened cheese. Pressurized cheeses were less crumbly and more elastic than control.  相似文献   

19.
ABSTRACT: Cheddar cheeses were made using a nisin-tolerant starter culture with either Lactobacillus delbrueckii subsp. bulgaricus UL12 (autolytic strain), Lactobacillus casei subsp. casei L2A (proteolytic strain), Lactococcus lactis subsp. lactis biovar. diacetylactis UL719 (nisin producer), or of Lb. bulgaricus UL12 and Lc. diacetylactis UL719. Lb. bulgaricus UL12 produced more trichloroacetic acid-soluble nitrogen than did Lb. casei L2A, which produced more phosphotungstic acid-soluble nitrogen than did Lc. diacetylactis UL719. High-performance liquid chromatography analyses showed that either lactobacilli or Lc. diacetylactis UL719 increased the hydrophilic and hydrophobic peptide contents. Cheeses containing both Lb. bulgaricus UL12 and Lc. diacetylactis UL719 had the most intense old Cheddar cheese flavor after 6 mo of ripening.  相似文献   

20.
研究了契达干酪成熟过程中游离钙/总钙、游离磷/总磷的变化,并与干酪成熟的标志性指标——蛋白质水解和质地(包括剪切力和硬度)变化的相关性进行了初步研究。研究结果表明:在干酪成熟过程中,游离钙/总钙与WSN/TN在P<0.001水平下正相关,与剪切力和硬度在P<0.001水平下负相关;游离磷/总磷与WSN/TN在P<0.001水平下负相关,与剪切力和硬度分别在P<0.001和P<0.01水平下正相关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号