首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 281 毫秒
1.
一种改进的零电压零电流倍流整流变换器   总被引:1,自引:0,他引:1  
提出一种改进型的移相全桥零电压零电流倍流整流变换器.采用变压器和隔直电容串联,滞后桥臂串联二极管,使其超前桥臂实现零电压开通,滞后桥臂实现零电流关断,与滞后桥臂串联的二极管也实现零电流关断,二次侧整流二极管也是自然关断,变换器所有的功率器件都有较大的软开关范围,文中还简单讨论了软开关范围和参数设计.最后,采用峰值电流控制,电压外环、电流内环的控制方案,研制2.5kW的软开关全桥变换器,并给出实验结果.  相似文献   

2.
提出了一种新型的含并联辅助电路的零电流转换(ZCT)全桥DC/DC变换器拓扑结构。该变换器采用脉宽调制(PWM),通过在原边增加一个由电容和电感构成的并联有源辅助电路,在开关管状态发生变化时,控制辅助电路的谐振电流,实现了主开关管和辅助开关管的零电流开关(ZCS),也实现了输出整流二极管的软换流,使整流二极管承受的电压相对较低,即为输出电压,特别适合于开关器件为IGBT的高电压大功率场合,消除了IGBT拖尾电流引起的开关损耗,改善了电路性能。分析了变换器的工作原理及零电流开关的实现条件,给出了主电路拓扑结构和谐振网络相关参数设计。根据所选取的参数对主电路进行了仿真研究,结果验证了电路分析的正确性和可行性。  相似文献   

3.
研究了一种零电压零电流开关的移相全桥软开关电路。通过在原边电路结构中增加一个辅助变压器和两个二极管,该直流变换器能实现滞后臂开关管的零电流关断。详细阐述了电路各阶段的工作原理,分析了零电压和零电流开关设计条件。最后制作了一个400 W的直流电源,测试波形表明超前臂和滞后臂开关管分别实现了零电压开通和零电流关断,电路分析设计正确。  相似文献   

4.
在全桥变换器中引入谐振电感和钳位二极管,可以使开关管在较宽的负载范围内实现零电压开关,并且消除输出整流二极管上的电压尖峰.当钳位二极管导通时,谐振电感被短路,电流保持不变,在开关管和钳位二极管中产生较大的导通损耗,而且如果滤波电感较大,钳位二极管有可能无法自然关断,从而产生较大的反向恢复损耗.在全桥变换器中增加一个复位绕组与谐振电感串联,当钳位二极管导通时,利用复位绕组电压使谐振电感电流快速下降,使钳位二极管电流快速减小到零.复位绕组的引入,不仅减小了谐振电感、开关管和钳位二极管的导通损耗,而且使钳位二极管可靠关断,避免了反向恢复.本文详细分析了加复位绕组全桥变换器的工作原理,并讨论变压器绕组匝比的选择,最后进行实验验证,并给出实验结果.  相似文献   

5.
该文介绍了一种新型的带有简单辅助电路的零电压零电流开关(ZVZCS)三电平DC/DC变换器,它的辅助电路不含耗能元件和有源开关,可实现超前管的零电压开通和滞后管的零电流关断。耦合电感取代了常规滤波电感,它所感应出的电压由功率变压器反射到初级,使得变换器在零状态时的循环电流减小到零。通过改变耦合线圈的匝数比,可以任意设置用于电流回零的电压幅值的大小,调节电流回零的时间。文中介绍了该变换器的工作原理,讨论了设计参数。通过实验验证,该电路具有辅助电路简单、效率高、整流二极管承受的电压低和环流自动调节等优点,适用于高电压、大功率的应用场合。  相似文献   

6.
杨莉  吴天强  梁勇  唐标 《电气传动》2021,51(19):16-20
针对开关电容与二次型Buck变换器相结合形成的二次型开关电容Buck变换器(SC-QBC)存在开关管电压应力大、效率低的问题,提出了一种新型降压谐振开关电容变换器.该变换器是在SC-QBC的基础上,通过增加谐振电感、二极管和电容元件得到.与SC-QBC相比较,在降压特性变化不大的情况下,新型变换器的开关管的电压应力变小;增加的谐振电感通过与开关电容谐振,使第2级实现了开关管的零电流关断(ZCS),减小了开关损耗,提高了开关管的工作频率,有利于变换器的重量和尺寸的减小;同时,谐振回路上的二极管都能实现零电流关断,减小了二极管的反向恢复损耗.这些优点有利于器件的选择和效率的提高.最后,通过实验验证了理论分析的正确性.  相似文献   

7.
提出了一种新型零电流转换(ZCT)移相全桥DC/DC变换器拓扑。该变换器通过在原边增加一个由电容和电感构成的有源辅助电路,在开关管状态发生变化时,控制辅助电路的谐振电流,可实现主功率开关管和辅助开关管的零电流开关(ZCS),消除IGBT拖尾电流引起的开关损耗,同时减小了二极管的反向恢复损耗。辅助电路结构不会增加开关管的导通损耗,还能一定程度上克服传统零电压开关(ZVS)全桥变换器原边环流损耗大和占空比丢失严重的缺点。详细分析了该新型全桥变换器的工作原理以及实现零电流开关的条件,给出了主电路拓扑结构及相关参数选取,根据所选取参数对主电路进行仿真研究,给出了主要仿真波形,结果验证了电路分析的正确性和设计的可行性。  相似文献   

8.
一种采用无源钳位电路的新型零电压零电流开关变换器   总被引:3,自引:5,他引:3  
针对传统的全桥移相PWM零电压零电流(ZVZCS)DC-DC变换器存在的缺点,提出了一种在副边采用无源钳位电路的新型全桥移相PWMZVZCSDC-DC变换器。这种变换器可以有效实现超前桥臂开关管的零电压开关,以及滞后桥臂开关管的零电流开关。这里详细分析了此变换器的工作原理以及变换器各个阶段的工作模态,并且分析了此变换器实现软开关的条件。理论分析表明这种变换器具有副边电压应力低,实现软开关负载范围大,辅助电路损耗小等优点。通过一台0.8kW,60kHz的样机进行了实验,验证了理论分析的正确性。实验结果证明该变换器能够在较宽的负载范围内实现滞后桥臂的零电流关断,适用于大功率应用IGBT的场合。  相似文献   

9.
王海  朱恩玉  王春艳 《电气开关》2011,49(4):48-50,53
介绍了一种零电压零电流开关(ZVZCS) DC/DC PWM三电平变换器,它通过在超前开关管上并联电容来实现零电压开关(ZVS),在高频变压器初级回路串联阻断电容,滞后开关管串联二极管,实现滞后开关管的零电流开关(ZCS).用飞跨电容将超前开关管、滞后开关管开关过程连接起来,实现三电平直流变换.采用移相控制,移相控制由...  相似文献   

10.
滞后臂串二极管的ZVZCS全桥变流器研究   总被引:1,自引:1,他引:0  
分析了滞后臂串联二极管的全桥零电压零电流开关(ZVZCS)变流器的工作原理并给出了主要设计步骤。与传统的采用饱和电感来阻断反向环流,从而实现滞后臂的ZCS不同,改进方法采用了滞后臂串联二极管的拓扑。新型拓扑不但能够减小占空比丢失,而且由于拓扑中没有饱和电感,因此回避了由饱和电感带来的发热问题,提高了效率。用一台5kW,20kHz的样机验证了上述结论。  相似文献   

11.
一种新型的全桥零电压零电流开关PWM变换器   总被引:22,自引:19,他引:22  
提出一种新型的FB-ZVZCS—PWM变换器拓扑,采用耦合电感构成辅助电路,结构简单、没有耗能元件或有源开关,不增加原边电流应力。新拓扑具有良好的通用性,对采用不同箝位方式如阻容吸收、次级无源箝位或有源箝位的全桥变换器均适用。变换器主开关管全部采用IGBT,开关频率大幅提高,功率密度、轻载效率及软开关负载范围显著改善,而变换器成本降低。给出了变换器拓扑结构、关键参数设计及实测波形,新拓扑已应用在3kW,350VDC变换器中。  相似文献   

12.
为了减小输出电流的纹波,在传统的全桥移相零电压零电流(ZVZCS)-PWM变换器的基础上设计了一种优化的变换器。通过在次级引入一个辅助电路,既能使超前臂实现ZVS,滞后臂实现ZCS,又能减小输出电流纹波。辅助电路中无损耗元件和有源开关,能克服传统变换器的缺点。该电路具有高效率,低损耗,小电流纹波和能带大功率负载的优点。根据电路特征和设计要求,选择采用2.5 kW,100 kHz的IGBT作为基本元件研制了一台实验样机,并验证了该理论的正确性。  相似文献   

13.
An interleaved DC‐DC converter with soft switching technique is presented. There are two converter modules in the adopted circuit to share the load power. Since the interleaved pulse‐width modulation (PWM) is adopted to control two circuit modules, the ripple currents at input and output sides are naturally reduced. Therefore the input and output capacitances can be reduced. In each circuit module, a conventional boost converter and a voltage doubler configuration with a coupled inductor are connected in series at the output side to achieve high step‐up voltage conversion ratio. Active snubber connected in parallel with boost inductor is adopted to limit voltage stress on active switch and to release the energy stored in the leakage and magnetizing inductances. Since asymmetrical PWM is used to control active switches, the leakage inductance and output capacitance of active switches are resonant in the transition interval. Thus, both active switches can be turned on at zero voltage switching. The resonant inductance and output capacitances at the secondary side of transformer are resonant to achieve zero current switching turn‐off for rectifier diodes. Therefore, the reverse recovery losses of fast recovery diodes are reduced. Finally, experiments based on a laboratory prototype rated at 400 W are presented to verify the effectiveness of the proposed converter. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
海洋电磁发射机通过向海底发射大功率的电磁波,来获取海底结构和矿产资源的分布规律,但目前发射机存在体积大、发射功率小等问题,直接影响勘探深度。提出采用PWM变换器组成发射机DC-DC可控源电路,然而常规的零电压开关全桥(ZVS-FB)PWM变换器存在高环流能量、占空比丢失以及滞后桥臂的ZVS范围受限等问题,为此介绍一种利用零电压零电流开关全桥(ZVZCS-FB)PWM变换器组成可控源电路。采用非对称移相控制,分析电路工作过程及特性,主要包括最大控制占空比、一次电流复位和隔直电容、占空比丢失、开关损耗以及环流能量等。仿真和实验结果表明该DC-DC可控源电路实现了超前桥臂的ZCS开通和ZVS关断以及滞后桥臂的ZCS开通和关断,提高了电路效率和功率密度。  相似文献   

15.
在全桥变换器中引入谐振电感和钳位二极管,可以使开关管在较宽的负载范围内实现零电压开关,并且消除输出整流二极管上的电压尖峰。在重载情况下,当钳位二极管导通时,谐振电感被短路,其电流保持不变,在开关管和钳位二极管中产生较大的导通损耗;而当负载减轻至一定程度时,钳位二极管工作在硬关断状态,不但产生较大的反向恢复损耗,甚至会损坏钳位二极管。本文首先详细分析该变换器在轻载情况下的工作原理,提出三种钳位二极管电流的复位方式,相应分析现有的几种钳位二极管电流复位方法的优缺点,并提出加辅助变压器的ZVS PWM全桥变换器。利用引入的辅助变压器,在任意负载下均可以使钳位二极管电流快速复位到零,不但可以减小变换器原边的导通损耗,提高变换效率,同时还可避免钳位二极管的硬关断,提高变换器的可靠性。本文详细分析了加辅助变压器的ZVS PWM全桥变换器的工作原理,并讨论辅助变压器的设计,最后进行实验验证,并给出实验结果。  相似文献   

16.
This paper presents a new DC/DC converter with series half‐bridge legs for high voltage application. Two half‐bridge legs connected in series and two split capacitors are used in the proposed circuit to limit the voltage stress of each active switch at one‐half of input voltage. Thus, active switches with low voltage stress can be used at high DC bus application. In the proposed converter, two circuit modules are operated with an interleaved pulse‐width modulation scheme to reduce the input and output ripple currents and to achieve load current sharing. In each circuit module, two resonant tanks are operated with phase‐shift one‐half of switching cycle such that the frequency of the input current is twice the frequency of the resonant inductor current. Based on the resonant behavior, all MOSFETs are turned on at zero voltage switching with the wide ranges of input voltage and load conditions. The rectifier diodes can be turned off at zero current switching if the switching frequency is less than the series resonant frequency. Thus, the switching losses on power semiconductors are reduced. The proposed converter can be applied for high input voltage applications such as three‐phase 380‐V utility system. Finally, experiments based on a laboratory prototype with 960‐W rated power are provided to demonstrate the performance of proposed converter. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
This paper presents a high step‐up soft switched dc–dc converter having the feature of current ripple cancelation in the input stage that is specialized for power conditioning of fuel cell systems. The converter comprises a special half‐bridge converter and a rectifier stage based upon the voltage‐doubler circuit, in which the coupled‐inductor technology is amalgamated with switched‐capacitor circuit. The input current with no ripple is the principal characteristics of this topology that is achieved by utilizing a small coupled inductor. In addition, the low clamped voltage stress across both power switches and output diodes is another advantage of the proposed converter, which allows employing the metal–oxide–semiconductor field‐effect transistors with minuscule on‐state resistance and diodes with lower forward voltage‐drop, and thereby, the semiconductors' conduction losses diminish considerably. The inherent nature of this topology handles the switching scheme based on the asymmetrical pulse width modulation in order for switches to establish the zero voltage switching, leading to lower switching losses. Besides, because of the absence of the reverse‐recovery phenomenon, all diodes turn off with zero current switching. At last, a 250‐W laboratory prototype with the input voltage 24 V and output voltage 380 V is implemented to verify the especial features of the proposed converter. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
在软开关Boost变换器基础上,通过引入Flyback单元,提出了一种高升压增益软开关DC-DC变换器,进一步提高了变换器的电压增益,避免了高占空比,减小了开关管电压应力。因此,可选取低电压等级低导通电阻MOSFET以降低变换器的成本,提高变换器的效率。在开关管关断期间,漏感能量向负载传递,有效利用了漏感能量,且无需额外的吸收电路。此外,变换器实现了开关管的零电压(ZVS)导通和二极管的零电流(ZCS)关断,进而消除了开关管的开通损耗和二极管的反向恢复损耗。研究了高升压增益软开关DC-DC变换器电路的工作特性和占空比丢失的主要原因,分析了该变换器的元器件应力及电路损耗。设计了一台160W的实验样机,实验结果验证了理论分析的正确性。  相似文献   

19.
This paper presents a single lossless inductive snubber‐assisted ZCS‐PFM series resonant DC‐DC power converter with a high‐frequency high‐voltage transformer link for industrial‐use high‐power magnetron drive. The current flowing through the active power switches rises gradually at a turned‐on transient state with the aid of a single lossless snubber inductor, and ZCS turn‐on commutation based on overlapping current can be achieved via the wide range pulse frequency modulation control scheme. The high‐frequency high‐voltage transformer primary side resonant current always becomes continuous operation mode, by electromagnetic loose coupling design of the high‐frequency high‐voltage transformer and the magnetizing inductance of the high‐frequency high‐voltage transformer. As a result, this high‐voltage power converter circuit for the magnetron can achieve a complete zero current soft switching under the condition of broad width gate voltage signals. Furthermore, this high‐voltage DC‐DC power converter circuit can regulate the output power from zero to full over audible frequency range via the two resonant frequency circuit design. Its operating performances are evaluated and discussed on the basis of the power loss analysis simulation and the experimental results from a practical point of view. © 2005 Wiley Periodicals, Inc. Electr Eng Jpn, 153(3): 79–87, 2005; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.20126  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号