共查询到15条相似文献,搜索用时 85 毫秒
1.
为了研究SF_6/N_2混合气体电介质击穿现象,利用编写的Matlab程序对放电通道发展过程进行数值模拟,并结合分形几何原理计算放电树枝的分形维数。基于分形理论,建立了考虑空间电荷分布和引入物理时间的棒-板分形放电仿真模型,通过有限元方法(FEM)计算空间电场,并首次结合通量校正传输(FCT)法求解带电粒子连续性方程,研究了不同发展概率指数、不同放电阈值和SF_6含量变化下分形放电特性。结果表明:概率指数越大,SF_6含量越高,则分形维数越小,放电树枝分叉也越少;体积含量50%/50%的SF_6/N_2混合气体放电分形维数D=1.219 2,整个放电过程流注发展平均速度为1.15Mm/s,并得到了不同时刻空间电荷及轴向电场与电子浓度的分布。 相似文献
2.
宏观上假定气体放电过程中产生的正、负离子束和电子束为流体,采用二维流体动力学模型对SF6/N2混合气体正向流注电晕放电过程进行建模,利用通量校正传输法求解连续方程,通过求解耦合的泊松方程处理空间电荷畸变电场对放电的作用,仿真过程中假设带电粒子的输运参数是折算电场的函数,对比分析了平行板电极间隙、同轴电极间隙和棒-板电极间隙三种电极结构中正向流注电晕放电特性。结果表明:流注电晕的形成加强了流注头部与阳极间的场强,减弱了流注尾部与阴极的场强。只有流注头部所在位置的初始场强足够大时放电才能继续发展,否则放电转化为稳定的流注电晕放电。 相似文献
3.
通过求解两项近似Boltzmann方程,得到SF_6/N_2的放电参数,并将该参数引入流体模型。结合有限元法和通量校正传输法对SF_6/N_2的流注放电过程进行循环迭代求解,计算其击穿电压。以均匀电场中压强0.1~0.6MPa、间隙5mm为例进行数值模拟,通过气体放电实验对计算结果进行验证。根据计算及实验结果得到不同混合比、压强下SF_6/N_2的协同效应系数,分析采用上述计算方法研究混合气体协同效应的准确性。为更全面地反映混合气体应用条件,进一步开展压强低于0.1MPa的SF_6/N_2击穿特性实验研究。研究表明:随着电子崩不断向前发展,放电间隙的空间电子数密度快速增长,SF_6放电过程中的空间电子数密度增长速度低于SF_6/N_2。0.1MPa下20%SF_6/80%N_2放电5ns时的电子数密度峰值达到4.6×1014m~(-3),而SF_6中该值仅为3.7×1012m~(-3)。当气压为0.1~0.6MPa时,SF_6/N_2击穿电压计算值与实测值的最大误差为9.23%,协同效应系数计算值随压强、混合比的变化趋势与实验结果相符,误差均值为5%。0.02~0.08MPa下SF_6/N2击穿电压、协同效应系数随压强、混合比的变化趋势与0.1~0.6MPa下的基本相同。 相似文献
4.
《高压电器》2016,(7)
SF_6气体具有较高的温室效应,减少SF_6气体的使用量已达成共识。笔者从SF_6混合气体的角度,对短间隙SF_6/N_2混合气体完全击穿时的光谱特性开展研究。采用光谱仪测量压强0.1~0.4 MPa、电极间距2~12 mm时SF_6及SF_6/N2混合气体完全击穿时的电子温度、电子数密度等参数,从微观和宏观相结合的角度研究混合气体放电时形成等离子体通道的物理特性。研究结果表明:0.1~0.4 MPa下随着气体压强的升高SF_6气体完全击穿时的电子温度由6.06×10~4 K下降到2.67×10~4 K,电子密度由3.15×10~(17) m~(-3)增大到6.91×1017 m~(-3);0.1 MPa下随着SF_6混合比的升高混合气体完全击穿时的电子温度由N_2时的1.17×10~4 K上升到SF_6时的6.06×104 K,电子数密度由N_2时的5.94×1017 m~(-3)下降到SF_6时的3.15×10~(17) m~(-3)。 相似文献
5.
6.
建立反映气体放电过程中粒子运动特性的二维流体模型,采用有限元和通量校正传输法对该模型进行数值求解,计算了50%SF6+50%N2在均匀电场下的放电规律,模拟了流注发展过程中粒子密度的分布情况,分析放电过程中带电粒子对均匀电场的影响。搭建气体放电实验平台,测量平板电极下绝缘间隙5 mm时SF6/N2混合气体的击穿电压,将SF6/N2击穿电压的实测值与折算值进行对比,研究不同混合比、气体压强对SF6/N2协同效应的影响。结果表明:随着流注向阳极运动,放电间隙内的电子数密度不断增大;在放电初始阶段,空间电荷对电场的影响很小,随着电荷数量不断增加,空间电场产生明显畸变现象。SF6/N2混合气体击穿电压的实验测量值大于折算值,且SF6含量越高,实测值和折算值越接近。可以看出,SF6/N2的协同效应在含有少量SF6时较明显,而当SF6含量较高时,混合气体的协同效应减弱。 相似文献
7.
《高压电器》2013,(12):49-53
在E/N的范围为150500 Td(1 Td=10-17V·cm2)内,采用蒙特卡罗(Monte Carlo)方法及空碰撞技术模拟SF6/N2混合气体的脉冲汤逊放电。在SF6的百分含量k为0500 Td(1 Td=10-17V·cm2)内,采用蒙特卡罗(Monte Carlo)方法及空碰撞技术模拟SF6/N2混合气体的脉冲汤逊放电。在SF6的百分含量k为0100%范围内,求出了SF6/N2混合气体的有效电离系数(α-η)/N,漂移速度Ve,并由此导出临界击穿场强(E/N)lim在不同k时的值,计算结果与其他研究者报道的实验数据显示极好的一致性。为SF6/N2替代SF6作为绝缘用气体时高压电器设备的设计提供了参考依据。 相似文献
8.
短间隙流注放电数值仿真方法研究进展 总被引:4,自引:0,他引:4
流注放电是间隙放电研究的重要内容与切入点,仅靠实验手段仍然无法获得流注放电的微观机制及放电通道内的全部物理参数,因此,数值仿真成为推动流注放电理论发展的一种重要方法。文章阐述了短间隙流注放电仿真的流体模型及其假设,分析了数值仿真算法中的3个难点问题,即粒子输运方程的准确求解、不规则区域中泊松方程的快速求解以及光电离项的快速求解。在回顾流注放电数值仿真领域解决上述3个难点问题的历史过程与取得进展的基础上,提出了解决上述问题的可能途径与努力方向。 相似文献
9.
10.
《高压电器》2016,(12):122-127
文中从气体放电过程中微观粒子的运动特性出发,针对均匀电场中SF_6/CF_4混合气体的流注放电特性进行数值模拟。基于两项近似求解Boltzmann方程的方法,得到不同压强、混合比下SF_6/CF_4的电子能量分布(electron energy distribution function,EEDF)。根据EEDF计算折合电离系数和折合吸附系数,将该放电参数引入流体模型,以气体压强0.1 MPa、间隙距离5 mm为例模拟SF_6/CF_4的流注放电过程,研究放电过程中空间电子数密度随时间和空间的变化规律。结果表明:混合比一定时α/N随E/N的增大显著提高,E/N一定时混合气体中CF_4体积分数越高α/N值越大;随着电子崩向前发展,崩头的电子迅速增长,放电5 ns时电子数密度峰值达到9.7×10~(12)m~(-3),当间隙完全击穿,电极间形成等离子体导电通道,此时空间电子数密度分布基本均匀,电子数密度达到10~(17)数量级。 相似文献
11.
目前绝大多数气体绝缘开关设备采用SF6气体绝缘,SF6泄漏导致严重的环保问题,人们迫切希望少采用或不采用SF6气体,以降低对环境的污染。为此,试验研究SF6和SF6/N2混合气体在不同混合比、不同压力以及在不同电场结构下的击穿特性,并与SF6气体的绝缘性能进行比较,试验结果表明:在N2中注入20%~30%的SF6气体后,SF6/N2混合气体绝缘性能指标可以达到纯SF6气体的80%左右,但若继续增加SF6气体的配比,则其耐电强度上升的幅度明显变慢;此外,试验研究还发现,极不均匀电场会大大降低气体的耐击穿电压强度。试验研究证明了采用SF6/N2混合气体代替纯SF6气体的技术方案的可行性。 相似文献
12.
为研究SF6气体中由极不均匀场引发的流注放电的微观机制以及放电过程中的瞬态产物,基于玻尔兹曼漂移扩散方程和SF6电子碰撞反应截面数据,对SF6气体中的流注放电进行有限元数值仿真。仿真模拟了流注发展过程中外部电流的3个阶段性特征,得到了SF6气体各发展阶段的微观过程,包括流注发展中电子、离子及电荷的密度分布;结合理论分析,揭示了外施电势与流注放电通道内外的电场分布的关系,并指出若使流注向前发展,外施电势不但要克服流注通道反向电场,还要维持流注头部电场大于电离临界场强。另外,通过该仿真模型还获得了SF6气体中电离瞬态产物的成分及各自比例,F、F+、SF6vib+、SF5+、SF4++、SF4+、SF3+和SF6+为流注放电过程中的主要瞬态产物。 相似文献
13.
14.
SF_6—CO_2混合气体的绝缘强度 总被引:1,自引:3,他引:1
研究表明,虽然SF_6—CO_2混合气体在均匀电场中的击穿强度稍逊于同样混合比的SF_6—N_2混合气体,但在不均匀电场中的击穿强度、特别是在雷电冲击电压下的击穿强度,却优于SF_6—N_2.此外,SF_6—CO_2在气膜复合绝缘中的局部放电特性也优于SF_6—N_2混合气体. 相似文献