首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The phytochrome-encoding gene Cerpu;PHY;2 (CP2) of the moss Ceratodon purpureus was heterologously expressed in Saccharomyces cerevisiae as a polyhistidine-tagged apoprotein and assembled with phytochromobilin (P phi B) and phycocyanobilin (PCB). Nickel-affinity chromatography yielded a protein fraction containing approximately 80% phytochrome. The holoproteins showed photoreversibility with both chromophores. Difference spectra gave maxima at 644/716 nm (red-absorbing phytochrome [Pr]/far-red-absorbing phytochrome [Pfr]) for the PCB adduct, and 659/724 nm for the P phi B-adduct, the latter in close agreement with values for phytochrome extracted from Ceratodon itself, implying that P phi B is the native chromophore in this moss species. Immunoblots stained with the antiphytochrome antibody APC1 showed that the recombinant phytochrome had the same molecular size as phytochrome from Ceratodon extracts. Further, the mobility of recombinant CP2 holophytochrome on native size-exclusion chromatography was similar to that of native oat phytochrome, implying that CP2 forms a dimer. Kinetics of absorbance changes during the Pr-->Pfr photoconversion of the PCB adduct, monitored between 620 and 740 nm in the microsecond range, revealed the rapid formation of a red-shifted intermediate (I700), decaying with a time constant of approximately 110 microseconds. This is similar to the behavior of phytochromes from higher plants when assembled with the same chromophore. When following the formation of the Pfr state, two major processes were identified (with time constants of 3 and 18 ms) that are followed by slow reactions in the range of 166 ms and 8 s, respectively, albeit with very small amplitudes.  相似文献   

2.
The folding thermodynamics and kinetics for the ribozyme from Bacillus subtilis RNase P are analyzed using circular dichroism and UV absorbance spectroscopies and catalytic activity. At 37 degrees C, the addition of Mg2+ (Kd approximately 50 microM) to the unfolded state produces an intermediate state within 1 ms which contains a comparable amount of secondary structure as the native ribozyme. The subsequent transition to the native state (Kd[Mg] approximately 0.8 mM, Hill coefficient approximately 3.5) has a half-life of hundreds of seconds as measured by circular dichroism at 278 nm and by a ribozyme activity assay. Surprisingly, the formation of the native structure is accelerated strongly by the addition of a denaturant; approximately 30-fold at 4.5 M urea. Thus, the rate-limiting step entails the disruption of a considerable number of interactions. The folding of this, and presumably other large RNAs, is slow due to the structural rearrangement of kinetically trapped species. Taken together with previous submillisecond relaxation kinetics of tRNA tertiary structure, we suggest that error-free RNA folding can be on the order of milliseconds.  相似文献   

3.
Mismatch between the hydrophobic thicknesses of transmembrane proteins and the supporting lipid bilayer and its consequences on the lateral organization of lipids have been investigated with bacteriorhodopsin and phosphatidylcholine species with a variety of acyl-chain lengths. The purple membrane, from the bacterium Halobacterium halobium, was used and reconstituted with dilauroyl-(Lau2GroPCho), dimyristoyl- (Myr2GroPCho), dipalmitoyl- (Pam2GroPCho) and distearoyl- (Ste2GroPCho) glycerophosphocholine. The phase behaviour of the lipids was investigated at different temperatures and different protein/lipid molar ratios, by analyzing the fluorescence excitation spectra of the 1-acyl-2-[8-(2-anthroyl)-octanoyl]-sn-glycero-3-phosphocholine probe, and by measuring the fluorescence depolarization of the 1,6-diphenyl-1,3,5-hexatriene probe. Data obtained with 1-acyl-2-[8-(2-anthroyl)-octanoyl]-sn-glycero-3-phosphocholine shows that bacteriorhodopsin produced positive or negative shifts in the phase transition temperature of the host lipids depending on the strength and sign of the mismatch between the lipid and protein hydrophobic thicknesses and also on the protein concentration and aggregation state in the lipid bilayer. In the region of high protein concentration (bacteriorhodopsin/phosphatidylcholine molar ratios approximately 1:50) and despite the presence of the endogenous lipids, bacteriorhodopsin (hydrophobic length dP approximately 3.0-3.1 nm) brought about a large upward shift in the phase-transition temperature of Lau2GroPCho (delta T approximately 40 K, mean hydrophobic thickness d approximately 2.4 nm), and to a lesser extent of Myr2GroPCho (delta T approximately 23 K, d approximately 2.8 nm), accounting for a strong rigidifying effect of the protein on these short-chain lipids. Bacteriorhodopsin had no influence on the phase properties of Pam2GroPCho (delta T approximately 0 K, d approximately 3.2 nm), a lipid whose mean hydrophobic thickness is similar to that of the protein. In contrast, the transition temperature of Ste2GroPCho was decreased (delta T approximately -13 K, d approximately 3.7 nm), indicating a fluidifying effect of the protein on this long-chain lipid. Similar effects on the lipid acyl-chain order were observed in the region of high-protein dilution (bacteriorhodopsin/phosphatidylcholine molar ratios < 1:500). In this region and for Lau2GroPCho, both the spectroscopic data and circular-dichroism spectra indicated that the protein was in the monomeric form. Phase diagrams, in temperature versus bacteriorhodopsin concentration, were constructed for Lau2GroPCho and Ste2GroPCho. On account of microscopic theoretical models and of the relative values of dP and d, these diagrams indicate a preference of the protein for those lipid molecules which are in the gel-ordered state in Lau2GroPCho but in the liquid disordered state in Ste2GroPCho.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
Microspectrophotometric examination of the retinal photoreceptors of the budgerigar (shell parakeet), Melopsittacus undulatus (Psittaciformes) and the zebra finch, Taeniopygia guttata (Passeriformes), demonstrate the presence of four, spectrally distinct classes of single cone that contain visual pigments absorbing maximally at about 565, 507, 430-445 and 360-380 nm. The three longer-wave cone classes contain coloured oil droplets acting as long pass filters with cut-offs at about 570, 500-520 and 445 nm, respectively, whereas the ultraviolet-sensitive cones contain a transparent droplet. The two species possess double cones in which both members contain the long-wave-sensitive visual pigment, but only the principal member contains an oil droplet, with cut-off at about 420 nm. A survey of the cones of the pigeon, Columba livia (Columbiformes), confirms the presence of the three longer-wave classes of single cone, but also reveals the presence of a fourth class containing a visual pigment with maximum absorbance at about 409 nm, combined with a transparent droplet. No evidence was found for a fifth, ultraviolet-sensitive receptor. In the chicken, Gallus gallus (Galliformes), the cone class with a transparent droplet contains "chicken violet" with maximum absorbance at about 418 nm. The rods of all four species contain visual pigments that are spectrally similar, with maximum absorbance between about 506 and 509 nm. Noticeably, in any given species, the maximum absorbance of the rods is spectrally very similar to the maximum absorbance of the middle-wavelength-sensitive cone pigments.  相似文献   

5.
A novel ordered assemblage of bacteriorhodopsin, a transmembrane protein functioning as a light-driven proton pump, is found in its three-dimensional crystal. Atomic force microscope images of the crystal surface reveal that spherical protein clusters with a diameter of approximately 50 nm are hexagonally close-packed. Electron micrographs of mechanically disintegrated crystals show that the inside of the protein cluster is filled with the mother liquor. The crystal is made up of hollow protein clusters. When disintegrated crystals are illuminated in the presence of a lipophilic anion, a significant alkalization of the external medium occurs. This result indicates that the protein cluster contains native lipids and that the cytoplasmic side of the protein faces the external medium. X-ray diffraction patterns and the observed diameter of the spherical shell suggest that approximately 200 bacteriorhodopsin trimers are aligned on a polyhedral surface lattice. Another remarkable feature of the spherical assemblies of bacteriorhodopsin is that they fuse with each other at low ionic strength and occasionally form a tubular or doughnut-like structure. The concept of membrane protein polymorphism is introduced on the basis of these observations, and it is used to describe the dynamic structure of some other biological membranes.  相似文献   

6.
The secondary structure of bacteriorhodopsin polypeptides comprising two (AB, CD, DE, FG), three (AC, CE, EG), four (AD, DG), or five (AE, CG) of the seven transmembrane segments has been analyzed by circular dichroism spectroscopy. A comparison of the alpha-helix content with that predicted from the high resolution structure of the native protein revealed that the N-terminal AB, AC, AD, and AE fragments and the C-terminal CG fragment are completely refolded in the presence of mixed phospholipid micelles. In contrast, the DG, EG, FG, CD, CE, and DE fragments did not form alpha-helices of the expected lengths at pH 6. Each of the latter fragments displayed, however, an increased helicity upon lowering the pH to 4. Fluorescence measurements with the CD and FG fragments suggest that this helix formation occurs within transmembrane segments C and G, respectively, and thus is likely to originate from the protonation of carboxyl residues that participate in proton translocation. The partial misfolding at neutral pH observed for the shorter fragments from the central and C-terminal part of bacteriorhodopsin indicates that the conformation of some transmembrane segments is specified by interactions with neighboring helices in the assembled structure. Moreover, the data demonstrate that two stable helices at the N terminus of a multihelical membrane protein are sufficient as a folding template to induce a native conformation to the following transmembrane domains.  相似文献   

7.
Evidence is presented that a compartmentalised protein exists in its native state only within a particular size of aqueous cavity. This behaviour is shown to exist in AOT reverse micelles using fluorescence quenching and circular dichroism (CD) studies of human serum albumin (HSA). In particular, far ultraviolet CD measurements show that a reduction in quencher accessibility to the fluorophore is consistent with the protein being nearest to its native conformation at a waterpool size of around 80 A diameter. We also show that the biexponential fluorescence decay of N-acetyl-L-tryptophanamide (NATA) in AOT reverse micelles arises from the probe being located in two distinct sites within the interfacial region. The more viscous of these two sites is located on the waterpool side of the interface and the other is located on the oil side of the interface.  相似文献   

8.
Oxidized Escherichia coli thioredoxin (Trx) is a small protein of 108 residues with one disulfide bond (C32-C35 essentially involved in the activity) and no prosthetic moieties, which folds into a structural motif containing a central twisted beta-sheet flanked by helices that is found in many larger proteins. The kinetics of refolding of Trx in vitro have been investigated using a newly developed active site titration assay and continuous or stopped-flow (SF) methods in conjunction with circular dichroism (CD) and fluorescence (Fl) spectroscopy. These studies revealed the presence of early folding intermediates with "molten globule or pre-molten globule" characteristics. Measurements of the ellipticity at 222 nm indicated that about 68% of the total change associated with refolding occurred during the dead time (4 ms) of the stopped-flow instrument, suggesting the formation of substantial secondary structure. The reconstruction of the far-UV CD spectrum of the burst intermediate using combined continuous and stopped-flow methods showed the formation of a defined secondary structure that contains more beta-structure than the native state. Kinetic measurements using SF far-UV CD and Fl over a wide range (0.087-6 M) of GuHCl concentrations at two temperatures (6 and 20 degreesC) demonstrated that the population formed during the 4 ms dead time contained multiple species that are stabilized mainly by hydrophobic interactions and undergo further folding along alternative pathways. One of these species leads directly and rapidly to the native state as demonstrated by active site titration, while the two others fold into a fourth intermediate that is slowly converted to the native protein. Double-jump experiments suggest that the heterogeneity in folding behavior results from proline isomerizations occurring in the unfolded state. Conversely, the accumulation of the burst intermediate does not depend on proline isomerizations.  相似文献   

9.
Escherichia coli dihydrofolate reductase contains five tryptophan residues that are spatially distributed throughout the protein and located in different secondary structural elements. When these tryptophans are replaced with [6-19F]tryptophan, distinct native and unfolded resonances can be resolved in the 1-D 19F NMR spectra. Using site-directed mutagenesis, these resonances have been assigned to individual tryptophans [Hoeltzli, S. D., and Frieden, C. (1994) Biochemistry 33, 5502-5509], allowing both the native and unfolded environments of each tryptophan to be monitored during the refolding process. We have previously used these assignments and stopped-flow NMR to investigate the behavior of specific regions of the protein during refolding of apo dihydrofolate reductase from urea in real time. These studies now have been extended to investigate the real time behavior of specific regions of the protein during refolding of dihydrofolate reductase in the presence of either NADP+ or dihydrofolate. As observed for the apoprotein, in the presence of either ligand, unfolded resonance intensities present at the first observed time point (1.5 s) disappear in two phases similar to those monitored by either stopped-flow fluorescence or circular dichroism spectroscopy. The existence of unfolded resonances which disappear slowly indicates that an equilibrium exists between the unfolded side chain environment and one or more intermediates, and that formation of at least one intermediate is cooperative. The results of this study are consistent with previous fluorescence studies demonstrating that dihydrofolate binds at an earlier step in the folding process than does NADP+ [Frieden, C. (1990) Proc. Natl. Acad. Sci. U.S.A. 87, 4413-4416] and provide a structural interpretation of the previous results. In the apoprotein as well as in the presence of either ligand, the protein folds via at least one cooperatively formed, solvent-protected intermediate which contains secondary structure. In the presence of NADP+, a stable native-like side chain environment forms in the regions around tryptophans 30, 133, and 47 in an intermediate which cannot bind NADP+ tightly. Native side chain environment forms in the regions around tryptophans 22 and 74 only in the structure which is able to bind NADP+ tightly. In the presence of dihydrofolate, stable native-like side chain environment forms cooperatively in the regions around each tryptophan in a non-native intermediate which must undergo a conformational change prior to binding NADP+. The presence of ligands influences the processes which occur during the folding of dihydrofolate reductase, and the ligand may in effect serve as part of the hydrophobic core.  相似文献   

10.
Light energy is transferred from retinal to the protein in bacteriorhodopsin after absorption of a photon resulting in changes of protein conformation. To examine whether the covalent bond, formed by the carbonyl group of retinal and the epsilon-amino group of lysine 216, is essential for this process, a mutant with lysine 216 replaced by alanine was expressed in Halobacterium salinarium L33 (BO-, retinal+). Reconstitution of the chromoprotein with varying retinylidene-n-alkylamines was possible in isolated membranes as well as in whole cells. When the protein in membranes with retinylidene Schiff bases of n-alkylamines of different lengths was reconstituted, the most stable chromoprotein was formed with retinylideneethylamine. The absorbance maximum was at 475 nm in alkaline solution and 620 nm in acidic solution. At neutral pH values both species equilibrate with a third one absorbing maximally at 568 nm. Reconstitution of whole cells with retinylideneethylamine led to a specific proton pump activity of 30 mol of protons per mol of BR per minute. This value indicates a lower limit of transport; no light saturation could be reached in these measurements in contrast to wild-type BR where transport activities of 162 mol of protons per mol of BR per minute under identical conditions can be achieved. Action spectra from flash photolysis experiments revealed that only the 568-nm form led to a M-intermediate with a half-time of decay of 17 ms. In summary, it could be shown that the covalent linkage between retinal and the protein is basically not required for the function of bacteriorhodopsin as a light-driven proton pump.  相似文献   

11.
Fluorometric determination of cytosolic calcium, [Ca2+]c, using Indo-1 in intact tissue, is limited by problems in obtaining calibration parameters for Indo-1 in vivo. Therefore, the goal of this study was to calibrate Indo-1 using in vitro constants, obtained from protein-containing reference solutions designed to produce similar Indo-1 spectral properties to those in vivo. Due to wavelength-dependent tissue light absorbance, the in vitro constants had to be absorbance-corrected using a novel method. The correction factor was calculated from the relationship between the Indo-1 fluorescence intensities at the two detection wavelengths. A mixture of proteins at approximately 28 mg/ml had a similar Indo-1 isosbestic wavelength (430 nm) to that found in vivo (427 nm), and a similar fluorescence ratio maximum with saturating Ca2+ to that found in vivo (after absorbance correction). Using calibration constants from this protein mixture, calculated [Ca2+]c in a Langendorf perfused rat heart was 187 nM during diastole, and 464 nM in systole. This new calibration method circumvented the considerable experimental problems of previous methods which required measurements with the cytosol fully depleted and fully saturated with Ca2+.  相似文献   

12.
The thermal re-isomerization of retinal from the 13-cis to the all-trans state is a key step in the final stages of the photocycle of the light-driven proton pump, bacteriorhodopsin. This step is greatly slowed upon replacement of Leu-93, a residue in van der Waals contact with retinal. The most likely role of this key interaction is that it restricts the flexibility of retinal. To test this hypothesis, we have exchanged native retinal in Leu-93 mutants with bridged retinal analogs that render retinal less flexible by restricting free rotation around either the C10-C11 (9,11-bridged retinal) or C12-C13 (11,13-bridged retinal) single bonds. The effect of the analogs on the photocycle was then determined spectroscopically by taking advantage of the previous finding that the decay of the O intermediate in the Leu-93 mutants provides a convenient marker for retinal re-isomerization. Time-resolved spectroscopic studies showed that both retinal analogs resulted in a dramatic acceleration of the photocycling time by increasing the rate of decay of the O intermediate. In particular, exchange of native retinal in the Leu-93 --> Ala mutant with the 9,11-bridged retinal resulted in an acceleration of the decay of the O intermediate to a rate similar to that seen in wild-type bacteriorhodopsin. We conclude that the protein-induced restriction of conformational flexibility in retinal is a key structural requirement for efficient protein-retinal coupling in the bacteriorhodopsin photocycle.  相似文献   

13.
We report the first protein phase-diagram characterized by a combination of volumetric, calorimetric, and spectroscopic techniques. More specifically, we use ultrasonic velocimetry, densimetry, and differential scanning calorimetry, in conjunction with UV absorbance and CD spectroscopy to detect and to characterize the conformational transitions of alpha-chymotrypsinogen A as a function of both pH and temperature. As judged by the CD spectra, we find that, at room temperature, the protein remains in the native state over the entire pH range investigated (pH 1 to 10). The melting profiles of the native state reveal three distinct pH domains in which protein denaturation produces different final states. Below pH 3.1, we find the heat-induced denatured state of the protein to be molten globule (MG), lacking the native-like tertiary structure, while exhibiting significant secondary structural elements. At neutral and alkaline pH, we find the heat-induced denatured state to be unfolded (U), lacking both tertiary and secondary structures, while being structurally similar to the urea-unfolded state. At intermediate pH values (between pH 3.1 and 7), we find the heat-induced denatured state to exhibit properties characteristic of both the MG and U states. Although at room temperature the protein remains native within the whole pH range studied (pH 1 to 10), our volumetric data reveal that the native state slightly "softens" at low pH, probably, due to pH-induced alterations in electrostatic forces causing the packing of the protein interior at low pH and room temperature to become less "tight". This softening of the protein at low pH is reflected in an 8% increase in the intrinsic compressibility, kM, of the protein "native" state. Our volumetric data also allow us to conclude that the heat-induced MG state retains a liquid-like, water-inaccessible core, with a volume that corresponds to about 40% of the solvent-inaccessible core of the native state. By contrast, our volumetric data are consistent with the U state of the protein being essentially unfolded, with the majority of its constituent atomic groups being solvent exposed and, therefore, strongly hydrated.  相似文献   

14.
Absorption, circular dichroism and optical rotatory dispersion of the bacteriorhodopsin containing purple membrane form Halobacterium halobium were studied in regard to the structural stability of this membrane during the photoisomerization of the retinal of the bacteriorhodopsin from the 13-cis to the all-trans configuration. The following conclusions were reached: (a) the macromolecular structure (protein-protein interaction which may result in the possible exciton interaction of the retinal pi-pi* (NV1) transition moments and protein-lipid interaction) are not significantly altered, (b) possibilities of delocalized conformation changes of the apoprotein involving secondary and/or tertiary structure can be ruled out, (c) localized secondary structure conformation changes of the apoprotein must be limited to the involvement of no more than one or two amino acid residues and localized tertiary structure conformation changes of the apoprotein must be limited to a very short segment of the protein chain containing only a few aromatic amino acid residues, and (d) the interaction between the apoprotein and retinal seems to be relatively more pronounced when the retinal is in the all-trans form than the 13-cis from and also the apoprotein seems to impose a more pronounced dissymmetric constraint on the retinal in the all-trans form than in the 13-cis form.  相似文献   

15.
The kinetics of the guanidine hydrochloride-induced unfolding and refolding of bovine beta-lactoglobulin, a predominantly beta-sheet protein in the native state, have been studied by stopped-flow circular dichroism and absorption measurements at pH 3.2 and 4.5 degrees C. The refolding reaction was a complex process composed of different kinetic phases, while the unfolding was a single-phase reaction. Most notably, a burst-phase intermediate of refolding, which was formed during the dead time of stopped-flow measurements (approximately 18 ms), showed more intense ellipticity signals in the peptide region below 240 nm than the native state, yielding overshoot behavior in the refolding curves. We have investigated the spectral properties and structural stability of the burst-phase intermediate and also the structural properties in the unfolded state in 4.0 M guanidine hydrochloride of the protein and its disulfide-cleaved derivative. The main conclusions are: (1) the more intense ellipticity of the intermediate in the peptide region arises from formation of non-native alpha-helical structure in the intermediate, apparently suggesting that the folding of beta-lactoglobulin is not represented by a simple sequential mechanism. (2) The burst-phase intermediate has, however, a number of properties in common with the folding intermediates or with the molten globule states of other globular proteins whose folding reactions are known to be represented by the sequential model. These properties include: the presence of the secondary structure without the specific tertiary structure; formation of a hydrophobic core; broad unfolding transition of the intermediate; and rapidity of formation of the intermediate. The burst-phase intermediate of beta-lactoglobulin is thus classified as the same species as the molten globule state. (3) The circular dichroism spectra of beta-lactoglobulin and its disulfide-cleaved derivative in 4.0 M guanidine hydrochloride suggests the presence of the residual beta-structure in the unfolded state and the stabilization of the beta-structure by disulfide bonds. Thus; if this residual beta-structure is part of the native beta-structure and forms a folding initiation site, the folding reaction of beta-lactoglobulin may not necessarily be inconsistent with the sequential model. The non-native alpha-helices in the burst-phase intermediate may be formed in an immature part of the protein molecule because of the local alpha-helical propensity in this part.  相似文献   

16.
The equilibrium unfolding and the kinetics of unfolding and refolding of equine lysozyme, a Ca2+-binding protein, were studied by means of circular dichroism spectra in the far and near-ultraviolet regions. The transition curves of the guanidine hydrochloride-induced unfolding measured at 230 nm and 292.5 nm, and for the apo and holo forms of the protein have shown that the unfolding is well represented by a three-state mechanism in which the molten globule state is populated as a stable intermediate. The molten globule state of this protein is more stable and more native-like than that of alpha-lactalbumin, a homologous protein of equine lysozyme. The kinetic unfolding and refolding of the protein were induced by concentration jumps of the denaturant and measured by stopped-flow circular dichroism. The observed unfolding and refolding curves both agreed well with a single-exponential function. However, in the kinetic refolding reactions below 3 M guanidine hydrochloride, a burst-phase change in the circular dichroism was present, and the burst-phase intermediate in the kinetic refolding is shown to be identical with the molten globule state observed in the equilibrium unfolding. Under a strongly native condition, virtually all the molecules of equine lysozyme transform the structure from the unfolded state into the molten globule, and the subsequent refolding takes place from the molten globule state. The transition state of folding, which may exist between the molten globule and the native states, was characterized by investigating the guanidine hydrochloride concentration-dependence of the rate constants of refolding and unfolding. More than 80% of the hydrophobic surface of the protein is buried in the transition state, so that it is much closer to the native state than to the molten globule in which only 36% of the surface is buried in the interior of the molecule. It is concluded that all the present results are best explained by a sequential model of protein folding, in which the molten globule state is an obligatory folding intermediate on the pathway of folding.  相似文献   

17.
Specific three- and two-disulfide intermediates that accumulate transiently during reduction of the disulfide bonds of Ca(2+)-bound bovine alpha-lactalbumin have been trapped, isolated, and characterized. The three-disulfide intermediate was shown to lack the Cys6-120 disulfide bond, confirming the observations of others. The newly-recognized two-disulfide form has been shown to lack the Cys6-120 and Cys28-111 native disulfide bonds. The remaining native disulfide bonds in the two partially reduced derivatives of alpha-lactalbumin are stable only when the proteins are in a Ca(2+)-bound state. Otherwise, they adopt an equilibrium between molten globule and unfolded conformations, and rapid thiol-disulfide interchange occurs, at a rate as high as when the proteins are fully unfolded in 8 M urea, to generate distinct mixtures of rearranged products. Urea gradient electrophoresis, circular dichroism, fluorescence, and ANS binding have been combined to give a detailed structural picture of alpha-lactalbumin, its derivatives with native and with nonnative disulfide bonds, and the fully reduced protein. The native structure of alpha-lactalbumin appears to be split by selective disulfide bond cleavage into at least one subdomain, which retains the Ca(2+)-binding site. The alpha-lactalbumin molten globule state is shown largely to result from nonspecific hydrophobic collapse, to be devoid of cooperative or specific tertiary interactions, and not to be stabilized substantially by the native or rearranged disulfide bonds.  相似文献   

18.
The spectral properties of lumazine protein and mixtures with the intermediates of the bacterial luciferase reaction, are reviewed. Measurements of fluorescence dynamics in particular have been employed with the aim of elucidating the mechanism by which lumazine protein functions in the bioluminescence of the bacteria of the type Photobacterium. The reaction of bacterial luciferase with its substrates produces bioluminescence emission with a spectral maximum at 496 nm. This spectrum is the same as the fluorescence of a luciferase flavin intermediate in the reaction, called the Fluorescent Transient. When lumazine protein is also present in the reaction; however, the bioluminescence emission now corresponds to the fluorescence of lumazine protein, which has a maximum at 475 nm. From measurements of the decay of fluorescence anisotropy of lumazine protein alone and in mixtures with the luciferase fluorescent transient, it is shown that a protein-protein complex is formed and that there is rapid energy transfer between the flavin on the luciferase and the lumazine derivative bound to its protein. An approximate calculation estimates the rate of this energy transfer to be faster than 10(9) s-1, and this would account for the efficient transfer of excitation from the flavin on the associated luciferase in the mixed protein bioluminescence reaction.  相似文献   

19.
In order to elucidate the mechanism of the reprotonation switch of bacteriorhodopsin, the protein conformation of the M intermediate of the D96N mutant was examined at various hydration conditions by X-ray diffraction and FTIR spectroscopy. We observed two distinct protein conformations at different levels of hydration. One is like in the N photointermediate, although in this case with an unprotonated Schiff base. It is stabilized in highly hydrated samples. The other is a protein conformation identical to that in the normal M intermediate of wild-type bacteriorhodopsin, which is stabilized in partially dehydrated samples. The hydration dependence of the structural transition between the M-type and the N-type conformations suggests that there is a change in the binding of water at the cytoplasmic surface. Thus, more water molecules bind in the N-type structure than in the M-type. This is consistent with the idea that the conformational change from the M-type to the N-type corresponds to the opening of the proton channel to the cytoplasmic surface by tilt of the cytoplasmic end of helix F, and that this is required for proton transfer from Asp-96 to the retinal Schiff base.  相似文献   

20.
The unfolding reaction of the dimeric protein tubulin, isolated from goat brain, was studied using fluorescence and circular dichroism techniques. The unfolding of the tubulin dimer was found to be a two-step process at pH 7. The first step leads to the formation of an intermediate conformation, stable at around 1-2 M urea, followed by a second step that was due to unfolding of the intermediate state. At pH 3, the urea-induced biphasic unfolding profiles obtained at pH 7 became a one-step process indicating that a stable intermediate was also formed at this pH. The intermediate at pH 3 was more stable toward urea denaturation than that at pH 7. The intermediate state has about 60% secondary structure, partially exposed aromatic residues, and less tertiary structure as compared to the native states. Also, hydrophobic surfaces were more exposed in the intermediate than in the native or unfolded states. These results indicate that the intermediate state observed during tubulin unfolding is not only distinct from both the native and unfolded forms but also possesses some properties characteristic of a molten globule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号