首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
Li Ni_(0.8)Co_(0.1)Mn_(0.1)O_2是一种高比容量锂离子电池正极材料。本文研究通过活性炭中孔道吸附钴、锰、镍盐的混合溶液的途径来制备纳米LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2材料。XRD研究显示,600℃和800℃焙烧得到的材料相比,700℃下焙烧得到的材料具有低的阳离子混排程度,因而具有好的充放电性能,在0.2C电流下充放,该材料的首次比容量为188.3mAh g~(-1),50圈循环后,容量仍达140.9m Ah g~(-1),容量保持率为74.0%。  相似文献   

2.
探讨采用共沉淀法,提高三元金属液浓度和流量的情况下,制备三元正极材料LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2的前驱体Ni_(0.8)Co_(0.1)Mn_(0.1)(OH)_2,通过扫描电镜分析、振实密度和比表面积测试,分析前驱体的物性数据。结果表明:提高三元金属液的浓度和流量,控制合适的反应条件,可得到形貌规则、比表面适中、振实密度高的前驱体产品。  相似文献   

3.
采用草酸盐共沉淀法制备出锌掺杂的锂离子电池正极材料,结合X射线衍射(XRD)、扫描电镜(SEM)、EDS能谱(EDS mapping)、恒电流充放电和电化学阻抗(EIS)测试,研究Zn2+掺杂对材料晶体结构、形貌及电化学性能的影响。实验结果表明,Zn2+掺杂可抑制高镍材料中的离子混排,形成多孔结构,缩短Li+的扩散路径,从而改善材料的倍率和循环性能。在2.7~4.3 V电压范围内,10 C倍率下Li(Ni_(0.6)Co_(0.2)Mn_(0.2))0.99Zn0.01O2表现出87.8 m Ah·g-1的放电比容量,比LiNi_(0.6)Co_(0.2)Mn_(0.2)O2提高了37.0%,1 C倍率下循环100圈后,Li(Ni_(0.6)Co_(0.2)Mn_(0.2))0.99Zn0.01O2的容量保持率为84.7%,比未掺杂的材料提高了12%。EIS测试结果则进一步验证锌掺杂有效降低了材料的电荷传质阻抗。  相似文献   

4.
研究了不同烧结温度下对高镍正极材料Li(Ni_(0.90)Co_(0.05)Mn_(0.05))_(0.998)Zr_(0.002)O_2形貌、结构以及电化学性能的影响。XRD和SEM结果表明:不同烧结温度下合成的Li(Ni_(0.90)Co_(0.05)Mn_(0.05))_(0.998)Zr_(0.002)O_2材料均为α-Na Fe O_2型层状结构,且随着烧结温度的增加,一次颗粒尺寸逐渐增大。740℃烧结温度下合成材料性能最优,首次放电比容量为210.8mAh/g,首次效率为89.1%,45℃下50圈循环保持率为93.44%。  相似文献   

5.
采用共沉淀法合成了球型前驱体Ni_(0.25)Mn_(0.75)(OH)_2,与锂源混合煅烧得到锂离子电池正极材料Li_(1.2)Ni_(0.2)Mn_(0.6)O_2,并对其进行铝掺杂改性,得到样品Li_(1.2)(Ni_(0.2)Mn_(0.6))_(1-x)Al_(0.8x)O_2(x=0~0.03)。利用X射线衍射(XRD)、扫描电镜(SEM)和电化学性能测试对各个样品的结构、形貌和电化学性能进行了表征,结果表明:掺杂铝后,样品具有规则的球形形貌,层状结构保持完整,阳离子混排程度降低,铝掺杂量为2%的样品(x=0.02)阳离子混排程度最小,结构最稳定,具有较高的首次充放电效率和最优异的循环性能,其首次充放电效率为84.2%,1C倍率下循环50次的容量保持率为95.7%。  相似文献   

6.
本文采用便捷绿色的电化学交流电法以金属钴为前驱体合成了Co(OH)_(0.225)(SO_4)_(0.925)/Co_3O_4复合物。扫描电子显微镜及透射电子显微镜表征说明其形貌为纳米颗粒,XRD表征说明其物相为正交Co(OH)_(0.225)(SO_4)_(0.925)和立方Co_3O_4的混合物。该材料应用于超级电容器具有较好的电化学性能。  相似文献   

7.
为研究干燥方式对Ni_(0.5)Co_(0.2)Mn_(0.3)(OH)_2三元前驱体物理性能的影响,采用了热风循环烘箱、盘式连续干燥器和回转窑干燥器三种不同的干燥方式,探讨了不同干燥方式下三元前驱体的形貌、振实密度、比表面积和粒径分布等的变化。结果表明热风循环烘箱烘干所得三元前驱体性能优于其余两种。  相似文献   

8.
采用钛酸四丁酯[Ti(OC_4H_9)_4]水解和900℃高温烧结工艺制得不同Ti~(4+)含量掺杂下的Li[Li_(0.2)Mn_(0.54)Ni_(0.13)Co_(0.13)]_(1-x)Ti_xO_2正极材料。采用XRD、SEM等表征方法对Ti~(4+)掺杂前后的Li[Li_(0.2)Mn_(0.54)Ni_(0.13)Co_(0.13)]O_2颗粒的微观结构、表面形貌进行分析研究,发现掺杂前后材料的结构并未明显变化。电化学测试结果表明,虽然Ti~(4+)表现为非电化学活性,使得掺杂有Ti~(4+)的正极材料其首次充放电比容量有所降低,但是在高倍率性能及循环性能测试中,Ti~(4+)掺杂改性效果表现明显。其中当Ti~(4+)掺杂量为x=0.02时,其倍率性能及循环性能最佳。在5C高倍率下放电,Li[Li_(0.2)Mn_(0.54)Ni_(0.13)Co_(0.13)]_(0.98)Ti_(0.02)O_2样品的放电比容量要比未掺杂样品高出约20 m A·h/g。而且经过100次循环后,Li[Li_(0.2)Mn_(0.54)Ni_(0.13)Co_(0.13)]_(0.98)Ti_(0.02)O_2样品的放电比容量仍有187.9 m A·h/g,容量保持率高达96.8%。而未掺杂样品的100次循环后容量保持率仅有91.2%。  相似文献   

9.
在前期研究工作中,以氧氯化锆溶液为前驱体,一定量的PEG-600为分散剂,氨水为沉淀剂,通过化学沉淀法合成Zr(OH)_4沉淀。经后续洗涤、过滤、干燥和焙烧成功制得了高比表面超细ZrO_2粉体材料。为了研究Zr(OH)_4沉淀过程的成核机理,设计了动力学实验。配制一定浓度的氧氯化锆溶液和氨水,迅速混合后得到Zr(OH)_4过饱和溶液,用电导率仪在线测定Zr(OH)_4过饱和溶液在沉淀过程中电导率随时间的变化,以此反映溶液中离子浓度的变化。将Zr(OH)_4沉淀成核及晶体生长过程看成一级反应,通过数据拟合可得出Zr(OH)_4沉淀成核及晶体生长过程的速率常数。结果发现:其成核速率k_1远大于生长速率k_2,混合瞬间爆发成核,避免二次成核造成的晶粒长大,说明该工艺适合制备高比表面超细ZrO_2粉体。  相似文献   

10.
采用典型的湿化学法制备了2%(wt)FeF_3包覆的Li[Li_(0.2)Mn_(0.54)Ni_(0.13)Co_(0.13)]O_2材料,并且通过XRD,SEM及TEM等技术来分析材料的微观结构和形貌。结果显示,在Li[Li_(0.2)Mn_(0.54)Ni_(0.13)Co_(0.13)]O_2材料表面包覆着一层5~20 nm厚的FeF_3薄膜。通过电化学性能测试发现,2%(wt)FeF_3@Li[Li_(0.2)Mn_(0.54)Ni_(0.13)Co_(0.13)]O_2样品的首次库伦效率更高,高倍率性能更佳,循环性能更加稳定。在0.5C倍率下循环100次后,其容量保持率仍有94.2%,放电比容量为190.6 m Ah×g~(-1)。同时电化学阻抗结果表明,FeF_3包覆层能够抑制Li[Li_(0.2)Mn_(0.54)Ni_(0.13)Co_(0.13)]O_2和电解液之间的副反应,稳定材料的层状结构。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号