首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
徐继开  刘元生  单忠强 《精细化工》2021,38(10):2103-2110,2124
将氟代有机溶剂2,2,3,3-四氟丙基甲基丙烯酸酯(TFPMA)作为双功能添加剂引入碳酸酯电解液体系,考察了TFPMA质量分数对增大润湿性的影响.采用交流阻抗、恒流充放电等测试了添加TFPMA后的锂金属电池性能.采用SEM和XPS表征了循环后的锂金属电极表面.结果表明,1.0%(质量分数,下同)TFPMA的添加使电解液与隔膜间的接触角从54°降至44°,内阻从6.15Ω降至1.94Ω,Li-LiFePO4电池在5 C电流密度下的比容量从66 mA·h/g提升至80 mA·h/g,1 C电流密度下的恒电流循环在100圈时还保持99%以上的库仑效率.TFPMA还促进了Li+的均匀沉积和优良固体电解质界面膜的形成,抑制了锂枝晶,电解液添加了1.0%TFPMA后,Li-Cu电池可以循环100圈以上,而库仑效率没有发生较大下降.循环后电极的SEM图表明,添加了1.0%TFPMA电解液的锂金属负极表面沉积更加平整,有较少的锂枝晶生成.  相似文献   

2.
张凯博  徐晓明  薛有宝  万柳  田威  曾涛  张亚婷 《化工学报》2021,72(10):5396-5401
以电动汽车的方型LiFePO4/石墨动力实验电池为研究对象,探究其在45℃恒温箱下1C充放电循环的失效机理。通过对电池进行解剖,系统分析了电池循环前后正负极片的厚度、形貌、结构和克容量的变化。随着电池在45℃高温下循环,电解液分解以及Fe溶出损失、SEI膜再生长,消耗大量的活性锂,交流内阻增加导致电化学极化增大,活性锂消耗引起负极容量损失为6.7%,负极结构变化造成的容量损失为22.64%。结果表明石墨负极动力学性能的衰减是电池失效的主要因素。  相似文献   

3.
以三氟甲磺酸镁(MFS)作为高电压双功能电解液添加剂,用于提高Li/LiNi0.5Mn1.5O4(Li/LNMO)电池的性能。采用线性扫描伏安法(LSV)、循环伏安法(CV)、充放电和交流阻抗(EIS)进行电化学性能测试,通过SEM、XPS、FTIR对含不同电解液的Li/LNMO电池循环前后的电极表面进行了表征。结果表明,MFS在充放电过程中优先于电解液溶剂氧化分解,在两个电极上形成电解液界面膜,对电极提供保护,抑制了电解液的分解。在MFS添加量(以基础电解液质量为基准,下同)为0.3%的电解液中,Li/LNMO电池在1 C倍率下循环300次后,放电比容量从初始时的135.12 mA·h/g降至123.86 mA·h/g,容量保持率高达91.67%。与电解液中未添加MFS的电池相比,其循环后阻抗明显减小,表现出较好的循环性能。  相似文献   

4.
为了提高锂负极的循环稳定性能,需要对金属锂进行改性保护,改善锂沉积行为,抑制锂枝晶的产生。主要使用冰醋酸挥发气体与锂负极原位反应,在金属锂表面原位形成一层醋酸锂,得到CH3COOLi-Li负极。表面形成的醋酸锂钝化膜可以抑制锂与电解液的反应,抑制循环过程中锂枝晶的生长。组装对称锂电池、锂铜电池和钴酸锂全电池并对其进行电化学表征,均表明CH3COOLi-Li负极相比于纯Li负极,电池的循环稳定性能得到明显改善。CH3COOLi-Li负极的锂铜电池循环100圈后Coulomb效率仍稳定在97%以上,组装的CH3COOLi-Li/LiCoO2全电池循环1 000圈容量保持率高达73.5%。  相似文献   

5.
综述了制约锂硫电池循环性能的因素和正极、负极、电解质对锂硫电池循环性能改善的影响。介绍了制约锂硫电池循环性能的主要因素:不可逆硫化锂的形成、硫正极多孔结构的失效和电解液组分与锂负极的副反应。分别介绍了改善锂硫电池循环性能的途径:合适的黏合剂、碳材料、正极制备工艺,锂负极保护技术,合理组分的电解质,电池结构与设计。并在此基础上对今后的发展趋势进行了展望。  相似文献   

6.
20 Ah锂离子动力电池倍率放电容量衰减的研究   总被引:1,自引:1,他引:0  
20 Ah锂离子动力电池在室温条件下不同倍率的循环性能测试表明,经过2C,3C高倍率循环200周之后的电池容量衰减率为25.58 %和34.85 %,而经过1C循环200周的电池衰减仅为20.28 %.经过3C循环200周的电池内阻在完全放电态时相对于新电池增加了32.9 %.通过对半电池的研究,发现高倍率条件下,负极引起的容量损失占主要地位,通过进一步交流阻抗的研究,得出在高倍率条件下负极SEI膜增厚,导致Li 在负极表面脱嵌阻力增大是引起电池衰减的主要原因.  相似文献   

7.
在1 mol.L-1LiPF6碳酸乙烯酯(EC)+碳酸二甲酯(DMC)+碳酸甲乙酯(EMC)(EC、DMC、EMC体积比为1∶1∶1)的电解液中加入添加剂氟代碳酸乙烯酯(FEC),用循环伏安(CV)、恒流充放电、电化学阻抗谱(EIS)等方法,研究了FEC对电解液的电化学窗口、LiNi0.5Mn1.5O4/Li和Li/MCMB半电池的性能影响。结果表明,在电解液中添加10%的FEC,可以拓宽电解液的电化学窗口,能在MCMB表面形成稳定的固体电解质相界面(SEI)膜,在室温1 C倍率下,LiNi0.5Mn1.5O4/Li电池循环50次后容量保持率能达到97.31%。  相似文献   

8.
以5V高电压LiNi0.5Mn1 5O4为正极材料,高安全性Li4Ti5O12为负极材料制备了LiNi0.5Mn1.5O4/Li4Ti5O12全电池,重点研究了正负极容量配比对电池电化学性能的影响.其中正极容量过量40%的电池具有最好的倍率和循环性能,在0.5 C电流下,P/N=1.4的电池的最高放电比容量为164.1 mAh·g-1,循环200次的容量保持率为88%;在2C电流下,P/N=1.4的电池的最高放电比容量为135.2 mAh·g-1,循环740次的容量保持率为91.1%.P/N=1.4的电池良好的倍率和循环性能与其内阻较小、电池极化较小等因素有关.  相似文献   

9.
磷酸铁锂结构稳定、循环性能优异,但是随着主机厂家对质保要求的不断提升,磷酸铁锂仍面临着高温循环性能不能满足客户要求的情况。以磷酸铁锂正极锂离子电池为研究对象,分别对比了基础电解液体系和改善电解液体系[在基础电解液中添加二氟二草酸硼酸锂(LiODFB)]对电池高温循环性能的影响。对循环后的电池采用直流内阻(DCIR)、电化学交流阻抗谱(EIS)、d Q/d U(恒定的电压间隔内电池容量的变化)曲线等无损分析方式进行数据对比,结果表明改善电解液体系电池的电荷转移阻抗进一步降低。通过对电池进行解剖,对两种电解液体系的电池极片进行了厚度分析、X射线衍射(XRD)分析、扫描电镜(SEM)分析、电感耦合等离子体发射光谱(ICP)元素分析等,结果表明改善电解液体系的电池在抑制负极表面副反应、减少正极铁溶出方面具有明显的效果,因此电池的高温循环性能更好。  相似文献   

10.
采用离子液体/γ-丁内酯(γ-BL)共混型电解液N-甲基-N-乙基乙基醚双氟磺酰亚胺(PYR_(1(2o2))TFSI)/γ-BL-LiTFSI作为锂离子电池电解液,研究了不同比例的PYR_(1(2o2))TFSI和γ-BL的共混型电解液对电极材料的电化学性能和表面特性的影响。通过同步热分析、红外光谱仪、扫描电镜、充放电测试、倍率性能测试分析电解液的物理性质和电化学性质。添加10%体积分数的γ-丁内酯至PYR_(1(2o2))TFSI-LiTFSI电解液中,该电解液表现出优异的电化学性能和阻燃性能,0. 2 C下循环50次后,Li/Li Fe PO_4电池放电比容量能够保持在147 m Ah/g,而且倍率性能明显优于其他3种电解液。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号