首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Fe_3O_4基多功能磁性纳米颗粒吸附重金属研究进展   总被引:1,自引:0,他引:1  
近年来,水体重金属污染越来越引起人们的关注。吸附法是去除水中重金属污染的一种简单高效的方法。磁性纳米颗粒作为吸附剂,具有比表面积大、便于分离等特点,但同时也存在着易团聚、分散性差的缺点。因此,需要对其进行表面修饰与功能化,以改进其分散特性及反应活性。综述了不同方法修饰的Fe3O4基多功能化磁性纳米颗粒在水体重金属吸附去除领域的应用,总结了功能化磁性纳米颗粒吸附去除重金属的优缺点,并对磁性纳米颗粒在重金属污染水体治理中的应用前景进行了展望。  相似文献   

2.
通过将金纳米粒子铆接到Fe3O4载体表面,制得了Au/Fe3O4纳米复合粒子。首先以对苯二酚为还原剂还原HAuCl4制得球形金纳米粒子;然后采用溶剂热法制备Fe3O4磁性纳米颗粒,并用巯基丙酸(MPA)对其修饰;最后通过MPA与金纳米粒子之间的相互作用,将金纳米颗粒固定到Fe3O4表面。采用透射电子显微镜(TEM)、扫描电子显微镜(SEM)、X射线衍射仪(XRD)、傅里叶变换红外光谱仪(FTIR)和振动样品磁强计(VSM)和紫外-可见分光光度计(UV-vis)对所制备材料进行形貌、晶型、磁性和催化性能的表征。结果表明,金纳米颗粒成功包覆在Fe3O4表面,所得到的Au/Fe3O4复合纳米材料具有单分散性和超顺磁性,并且对NaBH4还原对硝基苯酚(4-NP)制备对氨基苯酚(4-AP)的反应显示出优良的催化性能。  相似文献   

3.
近年来,低成本、高效的高分子纳米复合吸附剂的开发备受瞩目。以化学共沉淀法制备磁性纳米Fe3O4粒子,将得到的磁性纳米Fe3O4粒子在油相介质中功能化,并以功能化磁性纳米Fe3O4粒子为交联剂,接枝聚合丙烯酸单体和丙烯酰胺单体,得到了新型纳米Fe3O4/丙烯酸-丙烯酰胺共聚物复合磁性微凝胶吸附剂。该吸附剂具有制备工艺简便、原材料利用率高、成本低、固液分离容易、使用寿命长、对Pb(Ⅱ)和Cu(Ⅱ)具有选择吸附性等特点。  相似文献   

4.
以油酸包覆的Fe3O4磁性纳米粒子为原料,3,4-二羟苯基丙酸(DHCA)为表面改性剂,四氢呋喃(THF)为溶剂制备出DHCA功能化的Fe3O4纳米粒子。将制备得到的功能化Fe3O4纳米粒子偶联聚乙烯亚胺(PEI),得到稳定分散的聚乙烯亚胺功能化Fe3O4磁性复合纳米粒子。利用FTIR、TEM、VSM、Zeta电位对磁性粒子组分、形貌、粒径、磁学性能和电位性能进行表征。该法简便,反应条件温和,所制备的PEI功能化Fe3O4纳米粒子具有良好的超顺磁性和分散性。  相似文献   

5.
考察了核壳式表面功能化磁性聚苯乙烯纳米微球的可控制备工艺。采用紫外可见吸收光谱、透射电子显微镜、原子力显微镜及在不同溶剂中的分散性实验,对表面羧基化的磁性聚苯乙烯纳米微球的结构与形态进行了表征。结果表明,改变外加晶核Fe2O3纳米颗粒数目,可有效实现磁性聚苯乙烯纳米微球的尺寸可控。  相似文献   

6.
六价铬(Cr(VI))因其高毒性受到人们广泛关注,为提高吸附法去除Cr(VI)的效率,合成了一种新型核壳结构的聚乙烯亚胺(PEI)功能化复合纳米颗粒(Fe3O4@SiO2–NH2),用于去除水中Cr(VI).研究了磁性纳米颗粒的化学结构、形貌和磁性特性.考察了初始浓度、吸附时间、溶液pH值和无机阴离子对Cr(VI)吸附...  相似文献   

7.
纳米光催化剂TiO_2/Fe_3O_4的制备及表征   总被引:2,自引:3,他引:2  
寇生中  胡聪丽 《应用化工》2008,37(1):67-70,73
采用两步法制备磁性负载纳米光催化剂TiO2/Fe3O4。首先用液相共沉淀法制备磁性纳米Fe3O4颗粒;然后用溶胶-凝胶法,以钛酸四正丁酯为先驱体,通过水解缩聚在Fe3O4纳米颗粒表面包覆TiO2层,得到易于磁分离回收的复合纳米光催化剂TiO2/Fe3O4,粒径大约为30 nm。利用TEM、XRD、FT-IR、VSM对Fe3O4和TiO2/Fe3O4的结构和性能进行了表征,结果表明,制备的Fe3O4为面心立方晶体(FCC)结构,具有超顺磁性;TiO2为锐钛矿相,包覆在Fe3O4的表面,形成了核-壳式结构的TiO2/Fe3O4复合光催化剂。  相似文献   

8.
采用化学共沉淀的方法制备了20 am粒径的Fe3O4颗粒,颗粒具有很好的尖晶石结构,其晶格常数比块材料略小;磁性测量表明了其具有良好的亚铁磁性.重点研究了由Fe3O4纳米颗粒制成的磁性液体在频率为72 kHz的交变磁场下的磁感应发热行为,并对于磁场、磁性液体的浓度、载液的种类等因素对磁感应发热的饱和温度和升温速率的影响进行了测量和分析,进一步理解了磁感应发热的机制.  相似文献   

9.
崔升  沈晓冬  林本兰 《精细化工》2006,23(9):859-862
用于靶向抗癌药物微球的磁性Fe3O4颗粒必须具有合适的粒径,并且保证其不发生团聚。采用化学共沉淀法制备了纳米Fe3O4磁性颗粒,XRD分析证实了产物的主要组成为立方晶系Fe3O4;粒度分析表明,产物平均粒径16.3 nm左右,粒径分布宽度约5.8 nm;采用高分辨透射电镜(HRTEM)观察产物形貌,证明纳米Fe3O4胶体溶液中磁性粒子呈球形分布,且未发生明显的团聚现象;测得Fe3O4胶体溶液ζ电位为+39.9 mV,颗粒吸附溶液中的C l-离子形成了吸附双电层结构,较强的静电排斥力阻止纳米粒子团聚,因此,制得的纳米Fe3O4胶体溶液具有很强的分散稳定性。  相似文献   

10.
Fe3O4@m-SiO2磁性纳米颗粒的制备及其药物缓释行为   总被引:1,自引:0,他引:1  
采用溶胶-凝胶法制备Fe3O4@m-SiO2磁性纳米颗粒,通过乙醇回流法或煅烧法去除模板剂分别获得了单介孔和双介孔磁性纳米颗粒。利用X射线衍射、Fourier变换红外光谱、Zeta电位仪、透射电子显微镜、低温氮吸附比表面测试仪和振动样品磁强计对其物相、结构和性能进行了表征。选用维生素B12为模型药物,研究了两种介孔材料的药物缓释行为。结果表明:Fe3O4@m-SiO2磁性纳米颗粒尺寸在60~80 nm之间;单介孔和双介孔磁性纳米颗粒的比饱和磁化强度和药物装载量分别达到51、55 A.m2/kg和104.5、110.3 mg/g;在药物缓释过程中,两种介孔材料的释药量均达到80%以上,其中,单介孔材料更有利于药物缓释。  相似文献   

11.
Nanomedicine has gained huge attention in recent years with new approaches in medical diagnosis and therapy. Particular consideration has been devoted to the nanoparticles (NPs) in theranostic field with specific interest for magnetic and gold NPs (MNPs and GNPs) due to their peculiar properties under exposition to electromagnetic fields. In this paper, we aim to develop magneto-plasmonic heterodimer by combining MNPs and GNPs through a facile and reproducible synthesis and to investigate the influence of different synthesis parameters on their response to magnetic and optical stimuli. In particular, various syntheses were performed by changing the functionalization step and using or not a reducing agent to obtain stable NP suspensions with tailored properties. The obtained heterodimers were characterized through physical, chemical, optical, and magnetic analysis, in order to evaluate their size, shape, plasmonic properties, and superparamagnetic behavior. The results revealed that the shape and dimensions of the nanocomposites can be tuned by MNPs surface functionalization, as well as by the use of a reducing agent, giving rise to nanoplatform suitable for biomedical application, exploiting the gold absorbing peak in the specific gold absorbing range of GNPs, while maintaining the superparamagnetic behavior typical of the MNPs. The obtained nanocomposites can be proposed as potential candidates for cancer theranostics.  相似文献   

12.
提出了一种应用功能化的磁性纳米颗粒进行DNA提取的新方法.该方法首先通过3-氨丙基三乙氧基硅烷(APTES)在纳米颗粒表面修饰上氨基(-NH2)官能团,然后利用氨基化的磁性Fe3O4纳米粒子(NH2-MNPs)进行DNA提取。结果表明,利用100μgNH2-MNPs从200μL全血中提取的基因组DNA大于2.89μg,OD260/OD280比值介于1.78和1.82之间。  相似文献   

13.
Realizing the full potential of magnetic nanoparticles (MNPs) in nanomedicine requires the optimization of their physical and chemical properties. Elucidation of the effects of these properties on clinical diagnostic or therapeutic properties, however, requires the synthesis or purification of homogenous samples, which has proved to be difficult. While initial simulations indicated that size-selective separation could be achieved by flowing magnetic nanoparticles through a magnetic field, subsequent in vitro experiments were unable to reproduce the predicted results. Magnetic field-flow fractionation, however, was found to be an effective method for the separation of polydisperse suspensions of iron oxide nanoparticles with diameters greater than 20 nm. While similar methods have been used to separate magnetic nanoparticles before, no previous work has been done with magnetic nanoparticles between 20 and 200 nm. Both transmission electron microscopy (TEM) and dynamic light scattering (DLS) analysis were used to confirm the size of the MNPs. Further development of this work could lead to MNPs with the narrow size distributions necessary for their in vitro and in vivo optimization.  相似文献   

14.
Magnetic nanoparticles (MNPs) have been popularly used in many fields. Recently, many kinds of MNPs are modified as new absorbents, which have attracted considerable attention and are promising to be applied in waste water. In our previous study, we synthesized two novel MNPs surface-coated with glycine or lysine, which could efficiently remove many anionic and cationic dyes under severe conditions. It should be considered that MNP residues in water may exert some side effects on human health. In the present study, we evaluated the potential nanotoxicity of MNPs in human endothelial cells, macrophages, and rat bone marrow stromal cells. The results showed that the two kinds of nanoparticles were consistently absorbed into the cell cytoplasm. The concentration of MNPs@Gly that could distinctly decrease survival was 15 μg/ml in human umbilical vascular endothelial cells (HUVECs) or bone marrow stromal cells (BMSCs) and 10 μg/ml in macrophages. While the concentration of MNPs@Lys that obviously reduced viability was 15 μg/ml in HUVECs or macrophages and 50 μg/ml in BMSCs. Furthermore, cell nucleus staining and cell integrity assay indicated that the nanoparticles induced cell apoptosis, but not necrosis even at a high concentration. Altogether, these data suggest that the amino acid-coated magnetic nanoparticles exert relatively high cytotoxicity. By contrast, lysine-coated magnetic nanoparticles are more secure than glycine-coated magnetic nanoparticles.  相似文献   

15.
This study focuses on the synthesis and characterization of a novel magnetic nanocomposite 2,4,6-trihydrazino-1,3,5-triazine (THDT)-functionalized with silica-coated iron oxide magnetic nanoparticles (MNPs). This nanocomposite has porous morphology decorated with the spherical MNPs. Through co-precipitation of iron salts, MNPs were obtained. The prepared THDT was placed on the chlorine surface-modified MNPs. The present environment-friendly nanocatalyst intensely accelerated the synthesis of highly functionalized tetrahydrobenzo[b]pyran derivatives as well as reduced the reaction times and increased yields of the products.  相似文献   

16.
This short tutorial review highlights the advance in high temperature solution phase chemical synthesis of monodisperse magnetic nanoparticles (MNPs), especially iron oxide NPs, as contrast enhancement agents for cancer detection by magnetic resonance imaging (MRI). It introduces briefly the unique nanomagnetism of MNPs required for MRI. It then summarizes some typical methods used to prepare monodisperse Fe3O4 and ferrite MFe2O4 MNPs from high temperature organic phase reaction with controlled magnetic properties. It further outlines the chemistry used to make these MNPs biocompatible and target-specific. Finally it presents two examples to demonstrate the MNP control achieved from chemical synthesis for sensitive detection of cancer.  相似文献   

17.
Globally, cancer is the second (to cardiovascular diseases) leading cause of death. Regardless of various efforts (i.e., finance, research, and workforce) to advance novel cancer theranostics (diagnosis and therapy), there have been few successful attempts towards ongoing clinical treatment options as a result of the complications posed by cancerous tumors. In recent years, the application of magnetic nanomedicine as theranostic devices has garnered enormous attention in cancer treatment research. Magnetic nanoparticles (MNPs) are capable of tuning the magnetic field in their environment, which positively impacts theranostic applications in nanomedicine significantly. MNPs are utilized as contrasting agents for cancer diagnosis, molecular imaging, hyperfusion region visualization, and T cell-based radiotherapy because of their interesting features of small size, high reactive surface area, target ability to cells, and functionalization capability. Radiolabelling of NPs is a powerful diagnostic approach in nuclear medicine imaging and therapy. The use of luminescent radioactive rhenium(I), 188/186Re, tricarbonyl complexes functionalised with magnetite Fe3O4 NPs in nanomedicine has improved the diagnosis and therapy of cancer tumors. This is because the combination of Re(I) with MNPs can improve low distribution and cell penetration into deeper tissues.  相似文献   

18.

Different phosphates and phosphonates have shown excellent coating ability toward magnetic nanoparticles, improving their stability and biocompatibility which enables their biomedical application. The magnetic hyperthermia efficiency of phosphates (IDP and IHP) and phosphonates (MDP and HEDP) coated Fe3O4 magnetic nanoparticles (MNPs) were evaluated in an alternating magnetic field. For a deeper understanding of hyperthermia, the behavior of investigated MNPs in the non-alternating magnetic field was monitored by measuring the transparency of the sample. To investigate their theranostic potential coated Fe3O4-MNPs were radiolabeled with radionuclide 177Lu. Phosphate coated MNPs were radiolabeled in high radiolabeling yield (>?99%) while phosphonate coated MNPs reached maximum radiolabeling yield of 78%. Regardless lower radiolabeling yield both radiolabeled phosphonate MNPs may be further purified reaching radiochemical purity of more than 95%. In vitro stabile radiolabeled nanoparticles in saline and HSA were obtained. The high heating ability of phosphates and phosphonates coated MNPs as sine qua non for efficient in vivo hyperthermia treatment and satisfactory radiolabeling yield justifies their further research in order to develop new theranostic agents.

  相似文献   

19.
ABSTRACT: Finally, we have addressed some relevant findings on the importance of having well-defined synthetic strategies developed for the generation of MNPs, with a focus on particle formation mechanism and recent modifications made on the preparation of monodisperse samples of relatively large quantities not only with similar physical features, but also with similar crystallochemical characteristics. Then, different methodologies for the functionalization of the prepared MNPs together with the characterization techniques are explained. Theorical views on the magnetism of nanoparticles are considered.  相似文献   

20.
In this study, we compared FeNi alloy magnetic nanoparticles (MNPs) prepared by either combustion or chemical precipitation methods. We found that the FeNi MNPs generated by combustion method have a rather high saturation magnetization Ms of~180 emu/g and a coercivity field Hc of near zero. However, the alloy nanoparticles are easily aggregated and are not well dispersive such that size distribution of the nanoparticle clusters is wide and clusters are rather big (around 50~700 nm). To prepare a better quality and well dispersed Fe-Ni MNPs, we also developed a thermal reflux chemical precipitation method to synthesize FeNi3 alloy MNPs. The precursor chemicals of Fe(acac)3 and Ni(acac)2 in a molecular ratio 1,2-hexadecandiol and tri-n-octylphosphine oxide (TOPO) were used as reducer and surfactant, respectively. The chemically precipitated FeNi3 MNPs are well dispersed and have well-controlled particle sizes around 10~20 nm with a very narrow size distribution (±1.2 nm). The highly monodispersive FeNi3 MNPs present good uniformity in particle shape and crystallinity on particle surfaces. The MNPs exhibit well soft magnetism with saturation magnetization of ~61 emu/g and Hc~0. The biomedically compatible FeNi MNPs which were coated with biocompatible polyethyleneimine (PEI) polymer were also synthesized. We demonstrated that the PEI coated FeNi MNPs can enter the mammalian cells in vitro and can be used as a magnetic resonance imagine (MRI) contrast agent. The results demonstrated that FeNi MNPs potentially could be applied in the biomedical field. The functionalized magnetic beads with biocompatible polymer coated on MNPs are also completed for biomedical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号