首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The need for structural materials with high-temperature strength and oxidation resistance coupled with adequate lower-temperature toughness for potential use at temperatures above ∼1000 °C has remained a persistent challenge in materials science. In this work, one promising class of intermetallic alloys is examined, namely, boron-containing molybdenum silicides, with compositions in the range Mo (bal), 12 to 17 at. pct Si, 8.5 at. pct B, processed using both ingot (I/M) and powder (P/M) metallurgy methods. Specifically, the oxidation (“pesting”), fracture toughness, and fatigue-crack propagation resistance of four such alloys, which consisted of ∼21 to 38 vol. pct α-Mo phase in an intermetallic matrix of Mo3Si and Mo5SiB2 (T2), were characterized at temperatures between 25 °C and 1300 °C. The boron additions were found to confer improved “pest” resistance (at 400 °C to 900 °C) as compared to unmodified molybdenum silicides, such as Mo5Si3. Moreover, although the fracture and fatigue properties of the finer-scale P/M alloys were only marginally better than those of MoSi2, for the I/M processed microstructures with coarse distributions of the α-Mo phase, fracture toughness properties were far superior, rising from values above 7 MPa √m at ambient temperatures to almost 12 MPa √m at 1300 °C. Similarly, the fatigue-crack propagation resistance was significantly better than that of MoSi2, with fatigue threshold values roughly 70 pct of the toughness, i.e., rising from over 5 MPa √m at 25 °C to ∼8 MPa √m at 1300 °C. These results, in particular, that the toughness and cyclic crack-growth resistance actually increased with increasing temperature, are discussed in terms of the salient mechanisms of toughening in Mo-Si-B alloys and the specific role of microstructure.  相似文献   

2.
Phase relations in the Mo-Si-C system were evaluated at 1200 °C and 1600 °C within the composition range delimited by the phases Mo5Si3, MoSi2, Mo≤5Si3C≤1, and SiC. The evaluation included estimation of possible equilibria from known thermodynamic data of the binary phases as well as experimental work. For the experimental evaluation, high-purity powders were hot-pressed, heat-treated, and characterized by X-ray diffraction and electron microprobe analysis. It is shown that MoSi2 is in equilibrium with Mo≤5Si3C≤1 at 1600 °C, as previously established by Nowotnyet al, (Monatsh. Chem., 1954, vol. 85, pp. 255-72), and at 1200 °C, in contrast to the Mo5Si3-SiC equilibrium reported by van Looet al. (High Temp.- High Press., 1982, vol. 14, pp. 25-31). The thermodynamic estimation suggests that these phase relations should extend to lower temperatures in the range of compositions investigated. Thus, the third phase in silicon-lean MoSi2-SiC composites should be the Nowotny phase (Mo≤5Si3C≤1) instead of Mo5Si3. The Gibbs free energy of formation at 298 K of the idealized compound Mo5Si3C is estimated as -40.2 kJ/mol.  相似文献   

3.
A study has been made of the role of ductile-phase toughening on the ambient temperature fracture toughness and fatigue-crack propagation behavior of a molybdenum disilicide intermetallicmatrix composite reinforced with 20 vol pct niobium spheres. Using disk-shaped compact DC(T) samples, only moderate improvements (∼24 pct) in fracture toughnessK lcvalues were found for the composite compared to the unreinforced MoSi2 matrix material. Moreover, (cyclic) fatigue- crack propagation was seen at stress intensities as low as 75 to 90 pct ofK Ic, with growth rates displaying a high dependency (∼14) on the applied stress-intensity range. The lack of significant toughening due to the incorporation of ductile Nb particles is associated with an absence of crack/particle interactions. This is attributed to the formation of a weak reaction-layer interface and elastic mismatch stresses at the crack tip between the Nb and MoSi2, both factors which favor interfacial debonding; moreover, the spherical morphology of Nb phase stabilizes cracking around the particle. Results suggest that increasing the aspect ratio of the distributed Nb rein- forcement phase with attendant interfacial debonding and eliminating possible Nb-phase em- brittlement due to interstitial impurity contamination are critical factors for the successful development of tougher Nb/MoSi2 structural composites. Formerly with McDonnell Formerly with McDonnell  相似文献   

4.
The solidification behavior of two composites based on Al-Si alloy has been investigated as a function of cooling rate. Thermal analysis techniques have been used to establish the relationship between solidification history and the microstructure developed. The results of thermal analysis show that the characteristic parameters are influenced by the cooling rate. A marked difference in these parameters is observed between the reinforced and the unreinforced materials at all cooling rates studied. The cooling rates used in the present study range from 0.3 to 20 K/s. Increasing the cooling rate is shown to affect the undercooling parameters both in the liquidus and eutectic solidification region. The eutectic growth temperature of the composites is observed to be higher than that of the base alloy at all cooling rates. The depression in eutectic temperature ΔT is found to decrease by 27 K for the unreinforced alloy (A356) and by 17 K for the composites (A356 + 10, 20 vol pct SiC) at a higher cooling rate of ≃16 K/s. The presence of SiC reinforcement is observed to suppress the Mg2Si precipitate formation and decrease the amount of heat liberated during both primary and eutectic phase formation. Dendrite arm spacing (DAS) is correlated to the cooling rate by a relationship of the form DAS =AT -n, wheren is found to be of the order of 0.33.  相似文献   

5.
Both Ni-36 wt pct Sb and Ni-52.8 wt pct Sb eutectic alloys were highly undercooled and rapidly solidified with the glass-fluxing method and drop-tube technique. Bulk samples of Ni-36 pct Sb and Ni-52.8 pct Sb eutectic alloys were undercooled by up to 225 K (0.16 T E ) and 218 K (0.16 T E ), respectively, with the glass-fluxing method. A transition from lamellar eutectic to anomalous eutectic was revealed beyond a critical undercooling ΔT 1*, which was complete at an undercooling of ΔT 2*. For Ni-36 pct Sb, ΔT 1*≈60 K and ΔT 2*≈218 K; for Ni-52.8 pct Sb, ΔT 1*≈40 K and ΔT 2*≈139 K. Under a drop-tube containerless solidification condition, the eutectic microstructures of these two eutectic alloys also exhibit such a “lamellar eutectic-anomalous eutectic” morphology transition. Meanwhile, a kind of spherical anomalous eutectic grain was found in a Ni-36 pct Sb eutectic alloy processed by the drop-tube technique, which was ascribed to the good spatial symmetry of the temperature field and concentration field caused by a reduced gravity condition during free fall. During the rapid solidification of a Ni-52.8 pct Sb eutectic alloy, surface nucleation dominates the nucleation event, even when the undercooling is relatively large. Theoretical calculations on the basis of the current eutectic growth and dendritic growth models reveal that γ-Ni5Sb2 dendritic growth displaces eutectic growth at large undercoolings in these two eutectic alloys. The tendency of independent nucleation of the two eutectic phases and their cooperative dendrite growth are responsible for the lamellar eutectic-anomalous eutectic microstructural transition.  相似文献   

6.
The present study was undertaken to investigate the effect of solution treatment (in the temperature range 520 °C to 550 °C) and artificial aging (in the temperature range 140 °C to 180 °C) on the variation in the microstructure, tensile properties, and fracture mechanisms of Al-10 wt pct Si-0.6 wt pct Mg/SiC/10p composite castings. In the as-cast condition, the SiC particles are observed to act as nucleation sites for the eutectic Si particles. Increasing the solution temperature results in faster homogenization of the microstructure. Effect of solution temperature on tensile properties is evident only during the first 4 hours, after which hardly any difference is observed on increasing the solution temperature from 520 °C to 550 °C. The tensile properties vary significantly with aging time and temperature, with typical yield strength (YS), ultimate tensile strength (UTS), and percent elongation (EL) values of ∼300 MPa, ∼330 MPa, and ∼1.4 pct in the underaged condition, ∼330 MPa, ∼360 MPa, and ∼0.65 pct in the peakaged condition, and ∼323 MPa, ∼330 MPa, and ∼0.8 pct in the overaged condition. Prolonged solution treatment at 550 °C for 24 hours results in a slight improvement in the ductility of the aged test bars. The fracture surfaces exhibit a dimple morphology and cleavage of the SiC particles, the extent of SiC cracking increasing with increasing tensile strength and reaching a maximum in the overaged condition. Microvoids act as nucleation sites for the formation of secondary cracks that promote severe cracking of the SiC particles. A detailed discussion of the fracture mechanism is given.  相似文献   

7.
The effects of directional solidification processing on the microstructural, compositional, and magnetic properties of near eutectic Co-Sm alloys (∼9 at. pct Sm) have been studied. Because these sytems have high melting temperatures (T m > 1000 °C) and are quite reactive to oxidizing environments, special containment techniques during solidification were developed. Initial investigations have been performed at modest thermal gradients in the liquid,G L 60 °C/cm (1 °C/cm = 10−2 K/m), and over a range of furnace (solidification) velocities, 0.8 ≤V ≤ 45.4 cm/h (1 cm/h = 2.8 × 10−6m/s). Since the range ofG L/V values, a measure of the degree of interfacial morphological stability, was rather low, aligned dendritic morphologies, macrosegregation, and transition to rod eutectic growth were encountered. The primary dendrite spacing for near eutectic Sm2Co17/Co scaled withV −1/2 and varied from ∼50 μm for V ≥20 cm/h to hundreds of microns forV < 10 cm/h while the rod eutectic diameter and interred spacing were an order of magnitude smaller. For both dendritic and cooperative growth, the associated permanent magnet properties were rather poor,e.g., remanence less than 4 kG (1 gauss = 10−4 Tesla) and coercive force less than 1 kOe (1 Oe = 79.577 A/m) for the smallest dendrite and rod diameter dimensions encountered, although the magnetic hardness for the rod eutectic was larger than for the dendritic microstructure. Magnetization as a function of sample orientation indicated that the easy axis of magnetization was primarily along the direction of solidification for both ferromagnetic phases.  相似文献   

8.
A study has been made of the fracture toughness/resistance-curve (R-curve) and cyclic fatigue-crack propagation behavior in a molybdenum disilicide composite, ductile-phase toughened with nominally 20 vol pct Nb-wire mesh reinforcements (Nb m /MoSi2); results are compared with monolithic MoSi2 and MoSi2 reinforced with 20 vol pct spherical Nb particles (Nb p /MoSi2). It is found that the high aspect ratio wire reinforcements induce significant toughening in MoSi2, both under monotonic and cyclic fatigue loading conditions. Specifically, the Nb m /MoSi2 composite exhibits R-curve behavior with a steady-state fracture toughness of ∼13 MPa , compared to unstable fracture atK c values below 5 MPa in unreinforced MoSi2 or Nb p /MoSi2. Such behavior is seen to be associated with extensive crack deflection within the reaction layer between Nb and the matrix, which leads to crack bridging by the unbroken ductile phase. Similarly, resistance to fatigue-crack growth is found to be far superior in the wire-reinforced composite over pure MoSi2 and Nb p /MoSi2. Although crack paths are again characterized by extensive deflection along the Nb/matrix reaction layer, the role of crack bridging is diminished under cyclic loading due to fatigue failure of the Nb. Instead, the superior fatigue properties of the Nb m /MoSi2 composite are found to be associated with high levels of crack closure that result from highly deflected crack paths along the (Nb,Mo)5Si3 reaction layer interface.  相似文献   

9.
Copper mold cast cylinders of (Ti0.5Cu0.25Ni0.15Sn0.05Zr0.05)100−x Mo x composites are prepared. Addition of Mo in the bulk glass-forming alloy induces the formation of a dendrite/matrix composite. For 3-mm-diameter cylinders, the matrix exhibits a homogenous ultrafine microstructure for Mo content of 2.5 at. pct, and a fine eutectic microstructure for 5 at. pct Mo. For 5-mm-diameter cylinders, the matrix exhibits a dendritic microstructure for 2.5 at. pct Mo, and exhibits a coarser eutectic microstructure for 5 at. pct Mo. Despite the formation of a dendrite/nanostructured matrix composite in the cylinders, the quenched surface layer with a nanoscale grain size dominates the deformation and fracture of the 3-mm-diameter cylinders. More than 56 vol pct quenched layer leads to a distensile fracture mode and the samples exhibit high fracture strength and high Young’s modulus but low ductility. For 5-mm-diameter cylinders, the composite microstructure becomes dominant due to its more than 64 vol pct volume fraction leading to a cone-shaped fracture surface. The samples exhibit lower yield strength and lower Young’s modulus but better ductility compared to the 3-mm-diameter cylinders. The mechanical behavior of the Mo-bearing composites strongly depends on the microstructural homogeneity and casting defects formed upon solidification.  相似文献   

10.
INCONEL 718: A solidification diagram   总被引:2,自引:0,他引:2  
As part of a program studying weldability of Ni-base superalloys, results of an integrated analytical approach are used to generate a constitution diagram for INCONEL 718* in the temperature range associated with solidification. Differential thermal analysis of wrought material and optical and scanning electron microscopy, electron probe microanalysis, and analytical electron microscopy of gas tungsten arc welds are used in conjunction with solidification theory to generate data points for this diagram. The important features of the diagram are an austenite (γ)/Laves phase eutectic which occurs at ≈19.1 wt pct Nb between austenite containing ≈9.3 wt pct Nb and a Laves phase which contains ≈22.4 wt pct Nb. The distribution coefficient for Nb was found to be ≈0.5. The solidification sequence of INCONEL 718 was found to be (1) proeutectic γ, followed by (2) a γ/NbC eutectic at ≈1250°C, followed by (3) continued γ solidification, followed by (4) a γ/Laves phase eutectic at ≈1200°C. An estimate of the volume fraction eutectic is made using the Scheil solidification model, and the fraction of each phase in the eutectic is calculatedvia the lever rule. These are compared with experimentally determined values and found to be in good agreement.  相似文献   

11.

The solidification behavior of two composites based on Al-Si alloy has been investigated as a function of cooling rate. Thermal analysis techniques have been used to establish the relationship between solidification history and the microstructure developed. The results of thermal analysis show that the characteristic parameters are influenced by the cooling rate. A marked difference in these parameters is observed between the reinforced and the unreinforced materials at all cooling rates studied. The cooling rates used in the present study range from 0.3 to 20 K/s. Increasing the cooling rate is shown to affect the undercooling parameters both in the liquidus and eutectic solidification region. The eutectic growth temperature of the composites is observed to be higher than that of the base alloy at all cooling rates. The depression in eutectic temperature ΔT is found to decrease by 27 K for the unreinforced alloy (A356) and by 17 K for the com- posites (A356 + 10, 20 vol pct SiC) at a higher cooling rate of ≃16 K/s. The presence of SiC reinforcement is observed to suppress the Mg2Si precipitate formation and decrease the amount of heat liberated during both primary and eutectic phase formation. Dendrite arm spacing (DAS) is correlated to the cooling rate by a relationship of the form DAS =A(T) -n, wheren is found to be of the order of 0.33.

  相似文献   

12.
The mechanism by which iron causes casting defects in the AA309 (Al-5 pct Si-1.2 pct Cu-0.5 pct Mg) may be related to the solidification sequence of the alloy. Superimposing calculated segregation lines on the liquidus projection of the ternary Al-Si-Fe phase diagram suggests that porosity is minimized at a critical iron content when solidification proceeds directly from the primary field to the ternary Al-Si-βAl5FeSi eutectic point. Solidification via the binary Al-βAl5FeSi eutectic is detrimental to casting integrity. This hypothesis was tested by comparing the critical iron content observed in the standard AA309 alloy to that of a high-silicon (10 pct Si) variant of this alloy.  相似文献   

13.
14.
The hot-working behavior of two metal matrix composites (7090 + 20 vol pct SiC whiskers and 6061 + 20 vol pct SiC whiskers) and their powder metallurgy matrix alloys (7090 and 6061) was studied by hot torsion testing. Flow stress (σo) and strain-to-failure (ε f ) data were generated at deformation temperatures and strain rates corresponding to the potential range for commercially hot-working these alloys. Based on the hot torsion data, hot-working parameters were recommended where σo was low and ε f was high. Strain rate sensitivities and activation energies of deformation were computed for the alloys. Formerly with Martin Marietta Laboratories, Baltimore, MD  相似文献   

15.
On the nature of eutectic carbides in Cr-Ni white cast irons   总被引:4,自引:0,他引:4  
The mechanical and tribological properties of white cast irons are strongly dependent on whether they contain M7C3 or M3C carbides (M = Fe, Cr,etc.). In an effort to improve the wear resistance of such materials, the United States Bureau of Mines has studied the effects of adding 0.3 to 2.3 wt pct (throughout) Si to hypoeutectic irons containing approximately 8.5 pct Cr and 6.0 pct Ni. The eutectic carbides formed were identified by electron microprobe analysis, X-ray diffraction, and scanning electron (SEM) and optical microscopies. In addition, differential thermal analysis (DTA) was used to study the process of solidification. At Si contents of 0.3 and 1.2 pct, the eutectic carbides exhibited a duplex structure, consisting of cores of M7C3 surrounded by shells of M3C. Additionally, the microstructure contained ledeburite (M3C + γFe (austenite)). At the higher Si content of 1.6 pct, the eutectic carbides consisted entirely of M7C3, and some ledeburite remained. Last, when the Si content was raised to 2.3 pct, the eutectic carbides again consisted entirely of M7C3, but ledeburite was no longer formed. These observations can be explained in terms of the effects of Si and, to a lesser extent, of Ni on the shape of the liquidus surface of the metastable Fe-Cr-C phase diagram. The addition of Si reduces the roles played by the four-phase class IIp reactionL + M7C3 → M3C + γFe and the ledeburitic eutectic reactionL → M3C + γFe in the overall process of solidification. N.H. Macmillan, for-merly with the Albany Research Center.  相似文献   

16.
A metallographic study of the porosity and fracture behavior in unidirectionally solidified end chill castings of 319.2 aluminum alloy (Al-6.2 pct Si-3.8 pct Cu-0.5 pct Fe-0.14 pct Mn-0.06 pct Mg-0.073 pct Ti) was carried out using optical microscopy and scanning electron microscopy (SEM) to determine their relationship with the tensile properties. The parameters varied in the production of these castings were the hydrogen (∼0.1 and ∼0.37 mL/100 g Al), modifier (0 and 300 ppm Sr), and grain refiner (0 and 0.02 wt pct Ti) concentrations, as well as the solidification time, which increased with increasing distance from the end chill bottom of the casting, giving dendrite arm spacings (DASs) ranging from ∼15 to ∼95 /im. Image analysis and energy dispersive X-ray (EDX) analysis were employed for quantification of porosity/microstructural constituents and fracture surface analysis (phase identification), respectively. The results showed that the local solidification time(viz. DAS) significantly influences the ductility at low hydrogen levels; at higher levels, however, hydro-gen has a more pronounced effect (porosity related) on the drop in ductility. Porosity is mainly observed in the form of elongated pores along the grain boundaries, with Sr increasing the porosity volume percent and grain refining increasing the probability for pore branching. The beneficial effect of Sr modification, however, improves the alloy ductility. Fracture of the Si, β-Al5FeSi, α- Al15(Fe,Mn)3Si2, and Al2Cu phases takes place within the phase particles rather than at the particle/Al matrix interface. Sensitivity of tensile properties to DAS allows for the use of the latter as an indicator of the expected properties of the alloy.  相似文献   

17.
A new method to determine directly the solid fraction using the cooling curve was proposed for solidification of undercooled melts. Then, to construct three different baselines, a sudden function ξ α (x) is introduced. In terms of the ξ α (x) function, accordingly, the solid fractions during solidification of Ni-3.3 wt pct B, Al-7 wt pct Si, Al-14 wt pct Cu, and Fe-4.56 wt pct Ni alloys were predicted. The predictions of the primary, the regular lamellar eutectic, the anomalous eutectic, and the peritectic phases from cooling curves of the solidified samples coincide with the results of measurement or the available methods.  相似文献   

18.
Conclusions We examined the concentration and temperature dependences of the specific electrical resistivity in the two- (MoSi2-SiC) and three-phase (MoSi2-SiC-Y2O3) systems in the temperature range 100–1800°C. In the two-phase system, the lowest TCR in heating to 1800°C was recorded for the materials with the mass content of SiC of 20–40%. The results show that the TCR of the two-phase materials of the MoSi2-SiC system can be reduced by adding yttrium oxide to them.Translated from Poroshkovaya Metallurgiya, No. 6(306), pp. 83–85, June, 1988.  相似文献   

19.
The constitution of the Pb-Sn-Sr system from the Pb-Sn binary up to 36 at. pct Sr was determined by differential thermal analysis, metallography, microprobe analysis, and X-ray diffraction. Pb3Sr forms a continuous series of solid solutions with Sn3Sr, and is referred to here as the8 phase. Sn4Sr was the only other intermetallic phase found and is designated here as γ. A eutectic-like trough is formed between (Pb) and δ. It originates at 1.0 at. pct Sr and 324.5 °C (the (Pb)/Pb3Sr eutectic) and falls monotonically to ~75 at. pct Pb, 24.5 at. pct Sn, and 0.45 at. pct Sr at 283 °C. At 283 °C, a Class II, four-phase reaction occurs: L + δ (Pb) + γ. A eutectic-like trough between (Pb) and γ falls from the four-phase plane at 283 °C to the ternary eutectic at ~26 at. pct Pb, ~74 at. pct Sn and <0.3 at. pct Sr at 182 °C. The ternary eutectic reaction is L → (Pb) + (Sn) + γ.  相似文献   

20.
The liquidus surface of the C-Cr-Fe system has been experimentally determined in the Fe-rich region —C ≤6 wt pct, Cr ≤40 wt pct —using a sensitive differential thermal analysis technique, along with optical and scanning electron microscopy and X-ray diffraction. Previous liquidus surfaces for this system have differed on the extent of the (Cr,Fe)23C6 liquidus field, with one version reporting its existence at ∼20 wt pet Cr, and others finding that it did not occur at Cr levels of less than ∼60 wt pct. The present investigation provides evidence in favor of the second contention, with the (Cr,Fe)23C6 field not being detected at Cr ≤40 wt pct. Changes are proposed to the accepted liquidus surface in respect of the compositions of the invariant reactions—L + αδFe ⇌γFe + (Cr,Fe)7C3 andL + (Cr,Fe)7C3γFe + (Fe,Cr)3C —and of the monovariant eutectic valley—L⇌ γFe + (Cr,Fe)7C3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号