首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A broadening and splitting of the axial spread function is observed when high-numerical-aperture (NA) oil-immersion objectives are used on a confocal microscope to examine dielectric interfaces when the refractive index below the boundary is lower than the NA of the objective. The phenomena is due to total internal reflection probably as a consequence of the Goos-Hänchen shift. If total internal reflection occurs when undertaking confocal microscopy, this shift creates obvious problems when the optical sectioning capabilities must be optimal in reflectance mode and more subtle difficulties can arise when examining fluorescent emission. Alternatively, deliberately inducing total internal reflection can be used to estimate the refractive index in component parts within foams, emulsions and aerated specimens where such measurements can be relatively difficult to make by other means. Furthermore, the examination of total internal reflection with a confocal microscope permits the phenomena of total internal reflection itself to be probed with very high illumination intensities without disturbing the boundary conditions with an external probe. Finally, other changes in the apparent position of the focus were noted to occur when high-NA oil-immersion objectives are used to examine specimens such as metal mirrors.  相似文献   

2.
A novel compact illumination device in variable‐angle total internal reflection fluorescence microscopy (VA‐TIRFM) is described. This device replaces the standard condensor of an upright microscope. Light from different laser sources is delivered via a monomode fibre and focused onto identical parts of a sample under variable angles of total internal reflection. Thus, fluorophores in close proximity to a cell–substrate interface are excited by an evanescent wave with variable penetration depth, and localized with high (nanometre) axial resolution. In addition to quantitative measurements in solution, fluorescence markers of the cytoplasm and the plasma membrane, i.e. calcein and laurdan, were examined using cultivated endothelial cells. Distances between the glass substrate and the plasma membrane were determined using the mathematical algorithm of a four‐layer model, as well as a Gaussian‐shaped intensity profile of the illumination spot on the samples. Distances between 0 and 30 nm in focal contacts and between 100 and 300 nm in other parts of the cell were thus determined. In addition to measurements of cell–substrate topology, the illumination device appears appropriate for numerous applications in which high axial resolution is required, e.g. experiments on endocytosis or exocytosis, as well as measurements of ion concentrations proximal to the plasma membrane. The compact illumination device is also suitable for combining TIRFM with further innovative techniques, e.g. time‐resolved fluorescence spectroscopy, fluorescence lifetime imaging (FLIM) or fluorescence resonance energy transfer (FRET).  相似文献   

3.
Total internal reflection fluorescence (TIRF) microscopy, used in conjunction with flash photolysis, provides a useful way of investigating the kinetics of macromolecular interactions. We compare different TIRF optical geometries to establish an optimal combination. Excitation light was introduced via four different arrangements: (1) a prism positioned on the microscope optical axis, (2) an offset prism with propagation through a silica slide trans to the objective lens, (3) an offset prism with propagation through a silica coverslip cis to a water-immersion objective lens and (4) a prismless arrangement using a high NA oil-immersion objective lens. Photolysis was achieved using a Xe flash lamp and a customised silica condenser lens. Single myosin molecules labelled with a Cy3 fluorophore were used as a test sample. Although the offset trans prism gave the best signal-to-background ratio, a customised thin rhombic prism incorporated, on axis, into the flash condenser assembly was almost as good and was more practical for scanning multiple fields. An oil-immersion lens gave the brightest image for sample depths < 30 µm but above this limit, a water-immersion lens was better. The prismless arrangement may offer advantages in other situations but it is important to check the actual numerical aperture of the objective lens.  相似文献   

4.
We describe the theory and implementation of a frequency‐domain fluorescence lifetime confocal microscope using switched diode laser illumination. Standard, communications‐type, radio‐frequency electronics are used to provide inexpensive modulation references and to perform phase‐sensitive detection. This allows the rapid acquisition of fluorescence intensity and lifetime images and their display in real time. We show fluorescence lifetime images of bead objects and fluorescence lifetime images of biological specimens from a single confocal scan.  相似文献   

5.
To obtain colour reflected confocal images we have incorporated three lasers (HeNe: 633 nm; NdYAG: 532 nm; HeCd: 442 nm) and three photomultiplier detectors into our on-axis scanning system then adjusted the registration of the simultaneous output signals to produce full-colour images on a video monitor. Colour confocal images were produced from multi-stained fixed tissue as well as from natural pigments in fresh plant material. Rayleigh scattering properties of immunogold-labelled specimens were studied to show how variations in colour response can be utilized to identify subwavelength gold particles. Colour stereo pairs were produced to illustrate the accuracy with which the three-laser microscope system can record depth information without incurring problems due to chromatic aberration effects.  相似文献   

6.
The form of the interference term image in scanning confocal and scanning conventional interference microscopes is identical in all respects including optical sectioning. This observation is used to obtain confocal images and surface profiles from conventional scanning interference microscope images.  相似文献   

7.
The bilateral scanning approach to confocal microscopy is characterized by the direct generation of the image on a two-dimensional (2-D) detector. This detector can be a photographic plate, a CCD detector or the human eye, the human eye permitting direct visualization of the confocal image. Unlike Nipkow-type systems, laser light sources can be used for excitation. A design called a carousel has been developed, in which the bilateral confocal scan capability can be added to an existing microscope so that rapid exchange and comparison between confocal and non-confocal imaging conditions is possible. The design permits independent adjustment of confocal sectioning properties with lateral resolutions better than, or, in the worst case equivalent to, those available in conventional microscopy. The carousel can be considered as a stationary optical path in which certain imaging conditions, such as confocality, are defined and operate on part of the imaging field. The action of the bilateral scan mirror then extends this image condition over the whole field. A number of optical arrangements for the carousel are presented which realize various forms of confocal fluorescence and reflection imaging, with point, multiple point or slit confocal detection arrangements. Through the addition of active elements to the carousel direct stereoscopic, ratio, time-resolved and other types of imaging can be achieved, with direct image formation on a CCD, eye or other 2-D detectors without the need to modify the host microscope. Depending on the photon flux available, these imaging modes can run in real-time or can use a cooled CCD at (very) low light level for image integration over an extended period.  相似文献   

8.
We describe a technique for imaging enzyme activity through steady‐state fluorescence anisotropy measurements on a per‐pixel basis with a confocal microscope. With this method, enzyme activity is reported by changes in the fluorescence anisotropy of a fluorescently labelled substrate. Enzymatic cleavage of the substrate yields smaller labelled fragments that tumble more readily than the intact substrate and therefore yield a lower anisotropy. Anisotropy is recovered to an accuracy of 7% or better on and off the optical axis to depths of 210 µm using objective numerical apertures as high as 0.75. Enzyme imaging experiments were performed with Bodipy‐FL‐labelled bovine serum albumin (BSA) attached to sepharose beads as a substrate for trypsin and proteinase K. Anisotropy images acquired up to 1 h after enzyme addition revealed more rapid digestion of BSA with proteinase K than with trypsin, but in both cases anisotropy decreased by at least five‐fold. Fluorescence lifetime and time‐resolved anisotropy decay measurements were made on the construct in fluid solution to reveal the effects of enzyme activity. The Bodipy‐FL lifetime increased from 1.34 ns for the construct without enzyme to 5.98 ns after 1 h in the presence of proteinase K. Anisotropy decays yielded average rotational correlation times of 1.13 ns before enzymatic action and 0.27 ns after enzymatic action, consistent with the presence of smaller Bodipy‐containing protein fragments. These results suggest wide applicability of the technique in biological systems when used in conjunction with appropriately designed constructs.  相似文献   

9.
The phenomenon of total internal reflection fluorescence (TIRF) was placed in the context of optical microscopy by Daniel Axelrod over three decades ago. TIRF microscopy exploits the properties of an evanescent electromagnetic field to optically section sample regions in the close vicinity of the substrate where the field is induced. The first applications in cell biology targeted investigation of phenomena at the basolateral plasma membrane. The most notable application of TIRF is single‐molecule experiments, which can provide information on fluctuation distributions and rare events, yielding novel insights on the mechanisms governing the molecular interactions that underpin many fundamental processes within the cell. This short review intends to provide a ‘one stop shop’ explanation of the electromagnetic theory behind the remarkable properties of the evanescent field, guide the reader through the principles behind building or choosing your own TIRF system and consider how the most popular applications of the method exploit the evanescent field properties.  相似文献   

10.
The improved resolution and sectioning capability of a confocal microscope make it an ideal instrument for extracting three-dimensional information especially from extended biological specimens. The imaging properties, also with finite detection pinholes are considered and a number of biological applications demonstrated.  相似文献   

11.
In three-dimensional (3-D) fluorescence images produced by a confocal scanning laser microscope (CSLM), the contribution of the deeper layers is attenuated due to absorption and scattering of both the excitation and the fluorescence light. Because of these effects a quantitative analysis of the images is not always possible without restoration. Both scattering and absorption are governed by an exponential decay law. Using only one (space-dependent) extinction coefficient, the total attenuation process can be described. Given the extinction coefficient we calculate within a non-uniform object the relative intensity of the excitation light at its deeper layers. We also give a method to estimate the extinction coefficients which are required to restore 3-D images. An implementation of such a restoration filter is discussed and an example of a successful restoration is given.  相似文献   

12.
Ratiometric quantification of CFP/YFP FRET enables live-cell time-series detection of molecular interactions, without the need for acceptor photobleaching or specialized equipment for determining fluorescence lifetime. Although popular in widefield applications, its implementation on a confocal microscope, which would enable sub-cellular resolution, has met with limited success. Here, we characterize sources of optical variability (unique to the confocal context) that diminish the accuracy and reproducibility of ratiometric FRET determination and devise practical remedies. Remarkably, we find that the most popular configuration, which pairs an oil objective with a small pinhole aperture, results in intractable variability that could not be adequately corrected through any calibration procedure. By quantitatively comparing several imaging configurations and calibration procedures, we find that significant improvements can be achieved by combining a water objective and increased pinhole aperture with a uniform-dye calibration procedure. The combination of these methods permitted remarkably consistent quantification of sub-cellular FRET in live cells. Notably, this methodology can be readily implemented on a standard confocal instrument, and the dye calibration procedure yields a time savings over traditional live-cell calibration methods. In all, identification of key technical challenges and practical compensating solutions promise robust sub-cellular ratiometric FRET imaging under confocal microscopy.  相似文献   

13.
In this paper, we experimentally demonstrated a two-channel frequency division multiplexing confocal fluorescence microscopy system using a UV laser as the excitation source. In our two-channel frequency division multiplexing confocal fluorescence system, the incoming laser beam was divided into two beams and each beam was modulated with an individual carrier frequency. These two laser beams were then spatially combined with a small angle and focused into two diffraction-limited spots on the targeted cell (rat neural cell) surface to generate fluorescent signal. As a result, the fluorescent signals from two spots of the rat neural cell surface can be demodulated and distinguished during data processing. Furthermore, a quantitative analysis on the cross-talk among different frequencies was provided as well. The experimental results confirm that the two-channel frequency division multiplexing confocal fluorescence technology can not only maintain the high spatial resolution, but also realize the multiple points detection simultaneously with high temporal resolution (within millisecond level range), which benefits the dynamic studies of living biological cells.  相似文献   

14.
We demonstrate a novel design of two-colour two-photon fluorescence microscope in which isotropic three-dimensional imaging resolution and high scanning speed can be achieved simultaneously. In our scheme, a three-dimensional optical lattice constructed by multi-beam interference is used for two-colour two-photon fluorescence excitation. Our simulation results show that a resolution of 113.5 nm can be achieved in both transverse and axial directions with two pump pulses at the wavelengths of 400 and 800 nm, respectively; meanwhile, imaging speed can be greatly improved compared with that of traditional two-photon scanning fluorescence microscopes.  相似文献   

15.
Shortly after its development, the white light supercontinuum laser was applied to confocal scanning microscopy as a more versatile substitute for the multiple monochromatic lasers normally used for the excitation of fluorescence. This light source is now available coupled to commercial confocal fluorescence microscopes. We have evaluated a supercontinuum laser as a source for a different purpose: confocal interferometric imaging of living cells and artificial models by interference reflection. We used light in the range 460-700 nm where this source provides a reasonably flat spectrum, and obtained images free from fringe artefacts caused by the longer coherence length of conventional lasers. We have also obtained images of cytoskeletal detail that is difficult to see with a monochromatic laser.  相似文献   

16.
17.
In modern fluorescence microscopy, lasers are a widely used source of light, both for imaging in total internal reflection and epi-illumination modes. In wide-field imaging, scattering of highly coherent laser light due to imperfections in the light path typically leads to nonuniform illumination of the specimen, compromising image analysis. We report the design and construction of an objective-launch total internal reflection fluorescence microscopy system with excellent evenness of specimen illumination achieved by azimuthal rotation of the incoming illuminating laser beam. The system allows quick and precise changes of the incidence angle of the laser beam and thus can also be used in an epifluorescence mode.  相似文献   

18.
The point spread function of an objective lens of a fluorescence confocal microscope was directly measured by imaging fluorescent beads. We analysed how the measurement of the point spread function was influenced by the diameter of the fluorescent beads and how the restoration technique with a deconvolution algorithm improved the measuring performance. Numerical and experimental results are presented for a typical point spread function and a zero‐centred point spread function.  相似文献   

19.
We have compared different image restoration approaches for fluorescence microscopy. The most widely used algorithms were classified with a Bayesian theory according to the assumed noise model and the type of regularization imposed. We considered both Gaussian and Poisson models for the noise in combination with Tikhonov regularization, entropy regularization, Good's roughness and without regularization (maximum likelihood estimation). Simulations of fluorescence confocal imaging were used to examine the different noise models and regularization approaches using the mean squared error criterion. The assumption of a Gaussian noise model yielded only slightly higher errors than the Poisson model. Good's roughness was the best choice for the regularization. Furthermore, we compared simulated confocal and wide-field data. In general, restored confocal data are superior to restored wide-field data, but given sufficient higher signal level for the wide-field data the restoration result may rival confocal data in quality. Finally, a visual comparison of experimental confocal and wide-field data is presented.  相似文献   

20.
Three-dimensional images of microscopic objects can be obtained by confocal scanning laser microscopy (CSLM). The imaging process in a CSLM consists of sampling a specific volume in the object and storing the result in a three-dimensional memory array of a digital computer. Methods are needed to visualize these images. In this paper three methods are discussed, each suitable in a specific area of application. For purposes where realistic rendering of solid or semi-transparent objects is required, an algorithm based on simulation of a fluorescence process is most suitable. When speed is essential, as for interactive purposes, a simple procedure to generate anaglyphs can be used. Both methods have in common that they require no previous interpretation or analysis of the image. When the study of an object imaged by CSLM involves analysis in terms of a geometrical model, sophisticated graphics techniques can be used to display the results of the analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号