首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 219 毫秒
1.
In this paper the effect of the vanadium oxide loading on the surface vanadia structure and the activity as well as selectivity in the catalytic reduction of NO with NH3 was studied for a V2O5/TiO2 model system. A series of TiO2 (WO x stabilized anatase) supported vanadia catalysts with varying loadings were characterized by laser Raman spectroscopy, 51V MAS-NMR, V K XANES. To determine the acidic properties, DRIFTS measurements were done with pyridine adsorbed on the samples. The measurements indicate that with increasing active phase loading square pyramidal coordinated surface vanadia species are replaced by an amorphous highly dispersed vanadium oxide phase with a coordination like V2O5. In addition, the ratio of Brønsted to Lewis acid sites is shifted from a comparatively low to an equal level at high loadings. This structural change is accompanied by a clearly improved catalytic activity and selectivity.  相似文献   

2.
A series of Ru-promoted CrO x /Al2O3 as catalysts for the low-temperature oxidative decomposition of trichloroethylene (TCE) were characterized and evaluated in comparison with an unpromoted CrO x /Al2O3 catalyst. Catalyst characterization was conducted by surface area measurement, X-ray diffraction and X-ray photoelectron spectroscopy. Catalyst performance in the TCE decomposition reaction was evaluated with respect to the initial catalytic activity, the rate of catalyst deactivation, and the product concentrations of CO and Cl2 under dry or wet air conditions. The presence of a small amount of Ru, as much as 0.4 wt% in a CrO x /Al2O3 catalyst, brought about several beneficial effects on the catalytic reaction performance. As compared with the unpromoted CrO x /Al2O3, this Ru-promoted CrO x /Al2O3 catalyst showed enhanced catalytic activity (249 versus 264 °C in terms of temperature at which 50% of TCE conversion occurred), a reduced concentration of CO (180 versus 325 ppm) in the product, and a decreased propensity to deactivation. Performance improvements of the Ru-promoted CrO x /Al2O3 catalyst were thought to originate from its enhanced oxidation activity due to the coexisting highly-dispersed Ru oxides rendering less active Cr(III) to more active Cr(VI), and facilitating the process of supplying activated oxygen for the reaction system.  相似文献   

3.
The role of the Al2O3 support on the activity of supported Ag catalyst towards the selective catalytic reduction (SCR) of NO with decane is elucidated. A series of Ag/Al2O3 catalysts were prepared by impregnation method and characterized by N2 pore size distribution, XRD, UV–Vis, in-situ FT-IR and acidity measurement by NH3 and pyridine adsorption. The catalytic activity differences of Ag/Al2O3 are correlated with different properties of Al2O3 supports and the active Ag species formed. 4wt% Ag supported on sol-gel prepared Al2O3 (Ag/Al2O3 (SG), showed higher NO x conversion (65% at 400 °C), compared with the respective catalysts made from commercial Al2O3 (Ag/Al2O3 (GB), Ag/Al2O3 (ALO), (∼26 and 7% at 400 °C). The higher surface area, acidity and pore size distribution in sol–gel prepared Al2O3 (SG) results in higher NO and hydrocarbon conversion. Based on the UV–vis characterization, the activity of NO reduction is correlated to the presence of Agnδ+ clusters and acidity of Al2O3 support was found to be one of the important parameter in promoting the formation and stabilization of Agnδ+ clusters. Furthermore from pyridine adsorption results, presence of more number of Bronsted acid sites in Ag/Al2O3 (SG) is confirmed, which could also contribute to low temperature hydrocarbon activation and improve NO conversion. In situ FT-IR measurements revealed the higher rate of –CN and –NCO intermediate species formation over 4wt% Ag/Al2O3 (SG). We conclude that the physico–chemical properties of Al2O3 play a crucial role in NO x conversion over Ag/Al2O3 catalysts. Thus, the activity of the Ag/Al2O3 catalyst can be tailored by using a proper type of Al2O3 support.  相似文献   

4.
Effect of additives, Ce and Mn, on the catalytic performance of Sn/Al2O3 catalyst prepared by sol–gel method for the selective reduction of NOx with propene under lean conditions was studied. Sn–Ce/Al2O3 catalysts exhibited higher activity than Sn/Al2O3 catalyst and the optimum Ce loading is 0.5–1%. The promoting effect of Ce is to enhance the oxidation of NO to NO2 and facilitate the activation of propene, both of which are important steps for the NOx reduction. The presence of oxygen contributes to the oxidation of NO and shows a promoting effect.  相似文献   

5.
The most pressing concerns in environmental remediation are the design and development of catalysts with benign, low-cost, and efficient photocatalytic activity. The present study effectively generated a flower-like indium oxide (In2O3-MF) catalyst employing a convenient MOF-based solvothermal self-assembly technique. The In2O3-MF photocatalyst exhibits a flower-like structure, according to morphology and structural analysis. The enhanced photocatalytic activity of the In2O3-MF catalyst for 4-nitrophenol (4-NP) and methylene blue (MB) is likely due to its unique 3D structure, which includes a large surface area (486.95 m2 g−1), a wide spectrum response, and the prevention of electron–hole recombination compared to In2O3-MR (indium oxide-micro rod) and In2O3-MD (indium oxide-micro disc). In the presence of NaBH4 and visible light, the catalytic performances of the In2O3-MF, In2O3-MR, and In2O3-MD catalysts for the reduction of 4-NP and MB degradation were investigated. Using In2O3-MF as a catalyst, we were able to achieve a 99.32 percent reduction of 4-NP in 20 min and 99.2 percent degradation of MB in 3 min. Interestingly, the conversion rates of catalytic 4-NP and MB were still larger than 95 and 96 percent after five consecutive cycles of catalytic tests, suggesting that the In2O3-MF catalyst has outstanding catalytic performance and a high reutilization rate.  相似文献   

6.
Selective catalytic reduction of NO with propene was investigated over In2O3/Al2O3 catalysts prepared by three methods, namely, a single sol-gel (SG), impregnation (IM), and co-precipitation method (CP). The catalysts were characterized by means of BET, XRD, XPS, and TPD. The maximum NO conversion over In2O3/Al2 O3 prepared by sol-gel method was 95% at 400 °C in the absence of H2O, and the activity decreased slightly in the presence of H2O, and it was still 76% even in the presence of H2O and SO2. Although the retarding effect of SO2 on the activity was observed for the three catalysts, In2O3/Al2O3 (SG) showed relatively high activity. It is found that the high surface area and low average pore diameter are important to the catalytic activity, and the strong interaction between indium and alumina for In2O3/Al2O3 catalyst prepared by sol-gel method may be the reason of high activity for NO reduction. The reaction and surface studies showed that NO3 and partially oxidized hydrocarbons (RCOO species) are mainly intermediates, and the oxidation C3H6 to RCOO species maybe the key reaction process in the SCR of NO with C3H6.  相似文献   

7.
Chlorinated benzene, especially 1,2-dichlorobenzene (1,2-DCB), has been widely used as one of surrogate compounds of dioxin to find the noble methods to control dioxin. However, the relationship between the catalytic activity of dioxin surrogate compound and dioxin has not been understood quite well. In this work, we used a vanadium based catalyst (V2O5/TiO2) to compare catalytic activity of chlorinated benzenes and dibenzo-p-dioxins with low-chlorine content using the lab-scale system. We investigated the catalytic conversions of low-chlorinated dioxins, [2-monochlorodibenzo-p-dioxin (2-MCDD), 2,3-dichlorodibenzo-p-dioxin (2,3-DCDD)] and polychlorinated benzenes [1,2-DCB, 1,2,3,4-tetrachlorobenzene (1,2,3,4-TeCB), pentachlorobenzene (PeCB), hexachlorobenzene (HCB)] using a V2O5/TiO2 catalyst to understand quantitative relationship between dioxin and benzene with the chlorination level. The catalytic decomposition of chlorinated aromatic compounds was following 1,2-DCB > 1,2,3,4-TeCB > 2-MCDD > PeCB ≥ 2,3-DCDD > HCB. It might be more reasonable that PeCB or HCB should be used as the dioxin surrogate compound rather than 1,2-DCB. Also, we investigated the effect of both O2 content and space velocity (SV) on the catalytic decomposition of 1,2-DCB in the presence of V2O5/TiO2 catalyst because these factors should be considered significantly in combustion facilities to control various pollutants. The decomposition of 1,2-DCB shows dependency on the SV while the effect of oxygen content on the catalytic decomposition is negligible in the range of 5–20%.  相似文献   

8.
The mixed copper–silver oxide, Cu2Ag2O3, has been prepared by co-precipitation and tested for ambient temperature carbon monoxide oxidation. The catalyst demonstrated appreciable low temperature oxidation activity and the catalyst aged for 4 h was the most active. Carbon monoxide conversion increased with time-on-stream, reaching steady state after ca. 1000 min. Acomparison of the catalytic activity has been made with a representative sample of a high activity hopcalite, mixed copper/manganese oxide catalyst. On the basis of CO oxidation rate data corrected for the effect of catalyst surface area the Cu2Ag2O3, aged for 4 h was at least as active as the hopcalite.  相似文献   

9.
Three Ni/ZrO2–SO4=/Al2O3 catalysts with different concentrations of platinum (0.2, 0.3 and 0.4 wt%) were prepare and tested for n-butane isomerization reaction at 338 K, in absence and in presence of hydrogen. The results shown that, at low temperature, platinum contributes to the olefin or butyl ion formation and the reaction follows a bimolecular pathway. However, when the reaction occurs in the presence of hydrogen, the formation of butyl ions is inhibited. The main feature of platinum addition is the stabilization of the catalytic activity, which is indicated by the slow deactivation constants compared to that of the unpromoted catalyst.  相似文献   

10.
The gas-phase hydrogenation of benzene to cyclohexane over Ce1 - x Pt x O2 - (x = 0.01, 0.02) catalyst was investigated in the temperature range 80-200 °C. A 42% conversion of benzene to cyclohexane with 100% specificity was observed at 100 °C over Ce0.98Pt0.02O2 - with a catalyst residence time of 1.22 × 104 g s/mol of benzene. The activity of the catalyst was compared with those of Pt metal, combustion-synthesized Pt/-Al2O3 and Pt/-Al2O3. The turnover frequency value of Ce0.98Pt0.02O2 - is 0.292, which is an order of magnitude higher than those of the other Pt catalysts investigated. The kinetics of reaction and the deactivation behavior of the catalyst were studied and a regeneration methodology was suggested. The deactivation kinetics and structural evidence from XRD, XPS, TGA and H2 uptake studies suggest that the oxidized Pt in Ce0.98Pt0.02O2 - is responsible for the high catalytic activity towards benzene hydrogenation.  相似文献   

11.
Novel catalysts, SnxZr1-xO2 solid solutions, for NO selective catalytic reduction:NO SCR) are reported. They have much higher activity and selectivity than SnO2 and ZrO2. Sn4+ is the main reductive sites as proved by TPR. The dilution of Sn sites by the coexisting Zr causes a suppression of propene combustion and consequently promoted the selective reduction of NO. The rutile structure might be beneficial to NO SCR.  相似文献   

12.
The effects of Mn/Na2WO4, Li, and CaO loading on the monoclinic Sm2O3 catalyst were investigated for the oxidative coupling of methane using O2 or N2O as an oxidant. The catalysts were prepared by wet impregnation method and characterized by XRD, BET, CO2-TPD, and XPS analysis. Impregnation of Mn/Na2WO4 on monoclinic Sm2O3 resulted in the formation of Sm2?xMnxO3 phase, decreasing the catalytic performance. Li impregnation increased the C2 selectivity but decreased the catalytic activity. The SmLiO2 formation increased the catalytic activity and selectivity. High amounts of CaO impregnation increased the C2 selectivity of monoclinic Sm2O3 without a loss in catalytic activity. 6Li/m-Sm2O3 were found unstable due to the Li loss from the catalyst. The 15CaO/m-Sm2O3 was quite stable and showed 8.2% ethylene yield with N2O use, much higher than that was obtained with the well-known 2Mn/5Na2WO4/SiO2 and 4Li/MgO catalysts. N2O was more selective than O2 as an oxidant and enhanced ethylene formation.  相似文献   

13.
Temperature-programmed desorption (TPD) and oxidation (TPO) were used to investigate the decomposition and oxidation of ethanol on Al2O3, Pd/Al2O3, and PdO/Al2O3. Ethyl--13C alcohol (CH3 13CH2OH) was adsorbed on the catalysts so that reaction pathways of the two carbons could be distinguished. Alumina was mainly a dehydration catalyst, but dehydrogenation was also observed and some carbon remained on the surface. In the presence of O2, A12O3 oxidized the decomposition products and the-carbon was oxidized faster. Ethanol, which was adsorbed on A12O3, decomposed much faster on Pd/A12O3 by diffusing to Pd and undergoing CO elimination to form CH4,13CO, H2, and surface carbon. On PdO/A12O3, the decomposition was slower than on Pd/A12O3 until lattice oxygen was extracted above 450 K; the decomposition products were oxidized by lattice oxygen. In the presence of gas phase O2, Pd/Al2O3 was an active oxidation catalyst at low temperature, but lattice oxygen had to be extracted from PdO/A12O3 before it had significant oxidation activity.  相似文献   

14.
CO2 reforming of methane was studied over modified Ni/Al2O3 catalysts. The metal modifiers were Co, Cu, Zr, Mn, Mo, Ti, Ag and Sn. Relative to unmodified Ni/Al2O3, catalysts modified with Co, Cu and Zr showed slightly improved activity, while other promoters reduced the activity of CO2 reforming. Mn-promoted catalyst showed a remarkable reduction in coke deposition, while entailing only a small reduction in catalytic activity compared to unmodified catalyst. The catalysts prepared at high calcination temperatures showed higher activity than those prepared at low calcination temperature. The Mn-promoted catalyst showed very low coke deposition even in the absence of diluent gas and the activity changed only slightly during 100 h operation. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
ABSTRACT

The activity and optimum condition of metal-loaded activated carbon catalyst (Me/AC) for oxalic acid (OA) ozonation were evaluated. Results showed that Fe-loaded activated carbon (Fe/AC) showed better activity in five kinds of Me/AC catalysts prepared by a dipping method. Fe catalyst, crystallizing as γ-Fe2O3, dispersed well on AC surface. Fe2O3/AC, with 1.12% Fe weight ratio and 450°C calcination temperature and showed better activity for OA ozonation. 89.2% of OA was removed in the Fe2O3/AC/O3 process, which was higher than those in AC/O3 (79.6%) and O3 (3.2%) processes. The calcination process helped to promote adsorption capability and catalytic activity of AC. In addition, Surface hydroxyl groups played a key role in Fe2O3/AC’s catalytic activity. Acidic condition was more favorable for OA removal in the Fe2O3/AC/O3 process. A hydroxyl radical (?OH) oxidation mechanism was proven in Fe2O3/AC/O3. The catalytic activity of Fe2O3/AC remained satisfactory after several cycles, indicating that Fe2O3/AC had a good reusability property.  相似文献   

16.
The deNO x catalytic properties of a new class of open-framework structure materials, Li6[Mn3(H2O)12V18O42(XO4)] · 24H2O (X = V, S) (1), [Fe3(H2O)12 V18O42(XO4)] · 24H2O (X = V, S) (2), [Co3(H2O)12V18O42(XO4)] · 24H2O (X = V, S) (3), and Li6[Ni 3 II (H2O)12V 16 VI V 2 V O42(SO4)] · 24H2O (4), have been studied. The crystal structures of these novel systems consist of three-dimensional arrays of vanadium oxide clusters {V18O42(XO4)} , as building block units, interlinked by {–O–M–O–} (M = Mn, 1; M = Fe, 2; M = Co, 3; M = Ni, 4) bridges. Their open-framework structures contain cavities, similar to those observed in conventional zeolites, which are occupied by exchangeable cations and/or readily removable water of hydration. The catalysts derived from these materials were tested for the selective catalytic reduction (SCR) of nitrogen oxides {NO x } into N2 using a hydrocarbon, propylene, as the reducing agent. The catalysts were ineffective under lean burn conditions. However, the new catalysts, especially the one derived from the cobalt derivative (3), showed intriguing deNO x activity under rich conditions. They remove up to ~ 99% of the toxic NO x emissions in 1.5% O2 with 100% selectivity to N2. The active phase of the catalysts exhibit good stability, can be readily regenerated, and are selective to the desired product-N2. The catalytic reactions occur at moderately low temperatures (400–500 °C). The catalysts were characterized by FT-IR, temperature programmed reactions (TPR and TPO), SEM, BET surface area measurements, elemental analysis, and X-ray diffraction (XRD). Additional advanced techniques were used to further characterize the catalyst phases that showed most promising deNO x activity and increased tolerance to oxygen.  相似文献   

17.
Catalytic and electrical properties of an electrochemical NOx reduction system were investigated. This system had a laminated structure composed of BaCo(Al,Ga)11O19-based catalyst layer on a Pt/YSZ/Pt sheet. The stacked catalyst system can directly reduce more than 65% of NOx to N2 under an external bias above 2.5 V at 650 °C. In this system, oxygen existing around the catalyst layer was removed by O2− transportation through the YSZ layer.  相似文献   

18.
Al2O3 supported Mo, Ni, and NiMo/Al2O3 catalysts with various Ni contents were prepared to investigate the role of Ni as a promoter in a NiMo bimetallic catalyst system. The hydrodenitrogenation (HDN) reaction of pyridine as a catalytic probe was conducted over these catalysts under the same reaction conditions and the catalysts were characterized using BET surface area measurement, infrared spectroscopy, temperature programmed reduction, DRS and ESR. According to the results of reaction experiments, the NiMo/Al2O3 catalyst showed higher activity than Mo/Al2O3 catalyst in the HDN reaction and particularly the one with atomic ratio [Ni/(Ni+Mo)]=0.3 showed the best activity for the HDN of pyridine. The findings of this study lead us to suggest that the enhancement in the HDN activity with nickel addition could be attributed to the improvement in the reducibility of molybdenum and the formation of Ni-Mo-O phase.  相似文献   

19.
In the present work, we have investigated the reduction of NO by propane over perovskite-type oxides prepared by malic acid method. The catalysts were modified to enhance the activity by substitution of metal into A or B site of perovskite oxides. In addition, the reaction conditions, such as temperature, O2 concentration, and space velocity have been varied to understand their effects on the catalytic performance. In the LaCoO3 type catalyst, the partial substitution of Ba and Sr into A site enhanced the catalytic activity in the reduction of NO. For the La0.6Ba (Sr)o.4 Co1−x FexO3 (x=0-1.0) catalyst, the partial substitution of Fe into B site enhanced the conversion of NO, but excess amount of Fe decreased the conversion of NO. The surface area and catalytic activity of perovskite catalysts prepared by malic acid method showed higher values than those of solid reaction method. The conversion of NO increased with increasing O2 concentration and contact time. The introduction of water into reactant feed decreased the catalytic activity but the deactivation was shown to be reversible over La0.6Ba0.4Co1−x ,FexO3 catalyst.  相似文献   

20.
The characteristics and influencing factors for dinitrotoluene degradation by nano-Fe3O4-H2O2 were studied, and the nano-scale Fe3O4 catalyst was prepared by the coprecipitation method, with dinitrotoluene wastewater as the degradation object. The results showed that the catalytic reaction system within the pH value range of 1 to 9 could effectively degrade dinitrotoluene, and the optimal pH value was 3; with the increase of catalyst dosage, the degradation efficiency and the catalytic reaction rate of dinitrotoluene grew as well. The optimal catalyst dosage was 1.0 g/L when the H2O2 dosage was within the range of 0 to 0.8 mL/L; the degradation efficiency and reaction rate grew with the increase of H2O2 dosage. With further increase of H2O2 dosage, degradation efficiency and reaction rate decreased; under the best conditions with the H2O2 dosage of 0.8 mL/L, the catalyst concentration of 1 g/L and the pH value of 3 at room temperature (25 °C), the degradation rate of the 100-mg/L dinitrotoluene in 120 min reached 97.6%. Through the use of the probe compounds n-butyl alcohol and benzoquinone, it was proved that the oxidation activity species in the nano-Fe3O4-H2O2 catalytic system were mainly hydroxyl radical (?OH) and superoxide radicals (HO2 ?), based on which, the reaction mechanism was hypothesized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号