首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New high-speed low-power BiCMOS nonthreshold logic (BNTL) circuits are presented. These circuits offers a built-in CMOS and bipolar level conversion and are suitable for reduced power supply voltage. A 4-b carry lookahead generator (CLG) circuit is designed in BNTL, ECL, and CMOS using 0.8-μm BiCMOS technology. Circuit simulations show that this new logic provides speed comparable to or better than that provided by emitter-coupled logic (ECL) for lower power dissipation  相似文献   

2.
A new active pull-down emitter-coupled logic (ECL) circuit having full compensation against fluctuations in supply voltage and temperature is proposed. This circuit needs no capacitors but a feed-back circuit to adjust its pull-down capability to its load capacitance. The speed performance is compared between the active pull-down ECL circuit and the conventional ECL circuit using 0.8 μm SPICE parameters. The active pull-down ECL circuit is twice as fast as the conventional ECL circuit under the load capacitance of 0.8 pF with the same power dissipation. The relation between the power dissipation and the operating frequency is compared among the CMOS, the conventional ECL, and the active pull-down ECL circuits. The comparison adapts a new method in which the circuit parameters are optimized at each operating frequency. The SPICE simulation using this new method shows the conventional ECL circuit has a lower power dissipation than the CMOS circuit, even in the low operating frequency region of 100 MHz. The new active pull-down ECL circuit has the lowest power dissipation among the three circuits. The power dissipation of this circuit shows 47% lower than the CMOS circuit and 29% lower than the conventional ECL circuit at the operating frequency of 600 MHz and the load capacitance of 0.8 pF  相似文献   

3.
Novel high speed BiCMOS circuits including ECL/CMOS, CMOS/ECL interface circuits and a BiCMOS sense amplifier are presented. A generic 0.8 μm complementary BiCMOS technology has been used in the circuit design. Circuit simulations show superior performance of the novel circuits over conventional designs. The time delays of the proposed ECL/CMOS interface circuits, the dynamic reference voltage CMOS/ECL interface circuit and the BiCMOS sense amplifier are improved by 20, 250, and 60%, respectively. All the proposed circuits maintain speed advantage until the supply voltage is scaled down to 3.3 V  相似文献   

4.
This paper describes BiCMOS level-converter circuits and clock circuits that increase VLSI interface speed to 1 GHz, and their application to a 704 MHz ATM switch LSI. An LSI with a high speed interface requires a BiCMOS multiplexer/demultiplexer (MUX/DEMUX) on the chip to reduce internal operation speed. A MUX/DEMUX with minimum power dissipation and a minimum pattern area can be designed using the proposed converter circuits. The converter circuits, using weakly cross-coupled CMOS inverters and a voltage regulator circuit, can convert signal levels between LCML and positive CMOS at a speed of 500 MHz. Data synchronization in the high speed region is ensured by a new BiCMOS clock circuit consisting of a pure ECL path and retiming circuits. The clock circuit reduces the chip latency fluctuation of the clock signal and absorbs the delay difference between the ECL clock and data through the CMOS circuits. A rerouting-Banyan (RRB) ATM switch, employing both the proposed converter circuits and the clock circuits, has been fabricated with 0.5 μm BiCMOS technology. The LSI, composed of CMOS 15 K gate logic, 8 Kb RAM, I Kb FIFO and ECL 1.6 K gate logic, achieved an operation speed of 704-MHz with power dissipation of 7.2 W  相似文献   

5.
A novel low-power bipolar circuit for Gb/s LSIs, current mirror control logic (CMCL), is described. To reduce supply voltage and currents, the current sources of emitter-coupled-logic (ECL) series gate circuits are removed and the lower differential pairs are controlled by current mirror circuits. This enables circuits with the same function as two-stacked ECL circuits to operate at supply voltage of -2.0 V and reduces the current drawn through the driving circuits for the differential pairs to 50% of the conventional level shift circuits (emitter followers) in ECL. This CMCL circuit achieves 3.1-Gb/s (D-FF) and 4.3-GHz (T-FF) operation with a power supply voltage of -2.0 V and power dissipation of only 1.8 mW/(FF)  相似文献   

6.
New high-speed BiCMOS current mode logic (BCML) circuits for fast carry propagation and generation are described. These circuits are suitable for reduced supply voltage of 3.3-V. A 32-b BiCMOS carry select adder (CSA) is designed using 0.5-μm BiCMOS technology. The BCML circuits are used for the correct carry path for high-speed operation while the rest of the adder is implemented in CMOS to achieve high density and low power dissipation. Simulation results show that the BiCMOS CSA outperforms emitter coupled logic (ECL) and CMOS adders  相似文献   

7.
Starting from the viewpoint that the switch states and signal values in a digital circuit should be described separately by two different kinds of variable, the interaction between the switching element and signal in multi-valued ECL circuits is analysed and two types of connection operations, threshold switching operation and current switching operation, are proposed. The properties and circuit realizations of these new operations are discussed and the theory of differential current switches applicable to ECL circuits is established. Examples of basic ternary ECL circuits confirm that this theory can effectively guide the logic design of ternary ECL circuits at switch level. The circuits are verified by using the SPICE II program. They have the same logic level difference and transient characteristic as binary ECL circuits. Since the multi-valued ECL circuit uses only one set of power supply and can set several threshold values by using reference levels, it can be fabricated using conventional ECL techniques and is compatible with binary ECL circuits.  相似文献   

8.
The design of a full-CMOS circuit that converts voltage signals from those used for emitter-coupled logic (ECL) to CMOS and vice versa, for use in digital data transmissions with clock frequencies up to 150 MHz, is described. Extremely high performances are obtained due to a novel circuit principle, in both the ECL-to-CMOS convertor and the CMOS-to-ECL convertor. A wideband CMOS amplifier used in the ECL-to-CMOS convertor, incorporating a current injection technique to increase the bandwidth of the circuit, is also presented. A circuit principle is presented to realize an extremely fast CMOS-to-ECL conversion, based on a current switching technique and charge injection to compensate the large output capacitance. Both circuits make use of replica biasing to ensure maximum switching speed in the ECL-to-CMOS convertor and correct ECL output levels in the CMOS-to-ECL convertor. An ECL-CMOS-ECL repeater has been designed in a 1.2-μm double-metal CMOS process  相似文献   

9.
CMOS emitter-coupled logic (ECL) receiver circuits consisting of a differential-amplifier stage and a CMOS inverter are shown to convert 100-mV input signals to on-chip CMOS levels even with worst-case parameter variations in a 5-V 1-μm technology. Two different receiver circuits are used to cover a range of power supply options; a third circuit provides a comparison case. The differential amplifiers feature built-in feedback compensation for common-mode parameter variations. The differential input devices are designed with large widths, minimum channel lengths, and an interleaved layout to enhance gain, speed, and margin for differential mismatches. The simplicity of the circuits and the effectiveness of the built-in compensation facilitate analysis. Partitioning and simplifying assumptions are used to thoroughly test the worst case without complex simulations, while providing insight into the design process  相似文献   

10.
A merged CMOS/bipolar current switch logic (MCSL) is presented. CMOS/ECL level conversion and logical operation are realized simultaneously. This circuit technique allows a supply voltage reduction to 3.3 V. A carry delay time of 150 ps/bit for a 4-bit BiCMOS full adder was measured. This is about five times faster than an optimized CMOS adder.<>  相似文献   

11.
A Thin-Film-Silicon-On-Insulator Complementary BiCMOS (TFSOI CBiCMOS) technology has been developed for low power applications. The technology is based on a manufacturable, near-fully-depleted 0.5 μm CMOS process with the lateral bipolar devices integrated as drop-in modules for CBiCMOS circuits. The near-fully-depleted CMOS device design minimizes sensitivity to silicon thickness variation while maintaining the benefits of SOI devices. The bipolar device structure emphasizes use of a silicided polysilicon base contact to reduce base resistance and minimize current crowding effects. A split-oxide spacer integration allows independent control of the bipolar base width and emitter contact spacing. Excellent low power performance is demonstrated through low current ECL and low voltage, low power CMOS circuits. A 70 ps ECL gate delay at a gate current of 20 μA is achieved. This represents a factor of 3 improvement over bulk trench-isolated double-polysilicon self-aligned bipolar circuits. Similarly, CMOS gate delay shows a factor of 2 improvement over bulk silicon at a power supply voltage of 3.3 V. Finally, a 460 μW 1 GHz prescaler circuit is demonstrated using this technology  相似文献   

12.
唐青  胡剑浩  李妍  唐万荣 《信号处理》2012,28(1):145-150
为解决数字电路低功耗问题,电路工作电压被不断降低,导致电路逻辑器件呈现概率特性。本文提出了低电压下CMOS数字电路的错误概率模型,并完成硬件电路测试验证。本文首先详述了深亚微米(DSM)量级的门电路及模块在低电压供电条件下导致器件出错的因素,结合概率器件结构模型推导基本逻辑门概率模型,并提出了状态转移法用于完成由门级到模块级的概率分析模型;我们搭建硬件平台对CMOS逻辑芯片进行了低供电压测试,通过分析理论推导结果与实测结果,验证并完善了分析模型。实验结果表明,由状态转移法推导的电路概率模型符合电路实际性能,从而为构建低电压下数字电路概率模型提供了可靠分析模型。   相似文献   

13.
A novel way of implementing the leading zero detector (LZD) circuit is presented. The implementation is based on an algorithmic approach resulting in a modular and scalable circuit for any number of bits. We designed a 32 and 64 bit leading zero detector circuit in CMOS and ECL technology. The CMOS version was designed using both: logic synthesis and an algorithmic approach. The algorithmic implementation is compared with the results obtained using modern logic synthesis tools in the same 0.6 μm CMOS technology. The implementation based on an algorithmic approach showed an advantage compared to the results produced by the logic synthesis. ECL implementation of the 64 bit LZD circuit was simulated to perform in under 200 ps for nominal speed  相似文献   

14.
New true-single-phase-clocking (TSPC) BiCMOS/BiNMOS/BiPMOS dynamic logic circuits and BiCMOS/BiNMOS dynamic latch logic circuits for high-speed dynamic pipelined system applications are proposed and analyzed. In the proposed circuits, the bootstrapping technique is utilized to achieve fast near-full-swing operation. The circuit performance of the proposed new dynamic logic circuits and dynamic latch logic circuits in both domino and pipelined applications are simulated by using HSPICE with 1 μm BiCMOS technology. Simulation results have shown that the new dynamic logic circuits and dynamic latch logic circuits in both domino and pipelined applications have better speed performance than that of CMOS and other BiCMOS dynamic logic circuits as the supply voltage is scaled down to 2 V. The operating frequency and power dissipation/MHz of the pipelined system, which is constructed by the new clock-high-evaluate-BiCMOS dynamic latch logic circuit and clock-low-evaluate-BiCMOS (BiNMOS) dynamic latch logic circuit, and the logic units with two stacked MOS transistors, are about 2.36 (2.2) times and 1.15 (1.1) times those of the CMOS TSPC dynamic logic under 1.5-pF output loading at 2 V, respectively. Moreover, the chip area of these two BiCMOS pipelined systems is about 1.9 times and 1.7 times as compared with that of the CMOS TSPC pipelined system. A two-input dynamic AND gate fabricated with 1 μm BiCMOS technology verifies the speed advantage of the new BiNMOS dynamic logic circuit. Due to the excellent circuit performance in high-speed, low-voltage operation, the proposed new dynamic logic circuits and dynamic latch logic circuits are feasible for high-speed, low-voltage dynamic pipelined system applications  相似文献   

15.
王海永  邵志标 《微电子学》2000,30(3):155-157
分析了影响BiCMOS全摆幅输出和高速度的因素,探索了一种新的抑制BJT过饱和和反馈网络,提出了具有高速全摆幅输出的BiCMOS逻辑单元。该单元可以工作于1.5V,并且易于多输入扩展,它特别适于VLSI设计。模拟结果表明,该单元实现了优于CMOS的全摆幅输出,且其速度高于同类CMOS电路10倍以上。  相似文献   

16.
A BiCMOS logic circuit applicable to sub-2-V digital circuits has been developed. A transiently saturated full-swing BiCMOS (TS-FS-BiCMOS) logic circuit operates twice as fast as CMOS at 1.5-V supply. A newly developed transient-saturation technique, with which bipolar transistors saturate only during switching periods, is the key to sub-2-V operation because a high-speed full-swing operation is achieved to remove the voltage loss due to the base-emitter turn-on voltage. Both small load dependence and small fan-in dependence of gate delay time are attained with this technique. A two-input gate fabricated with 0.3-μm BiCMOS technology verifies the performance advantage of TS-FS-BiCMOS over other BiCMOS circuits and CMOS at sub 2-V supply  相似文献   

17.
A novel logic approach, diode-HBT logic (DHL), that is implemented with GaAlAs/GaAs HBTs and Schottky diodes to provide high-density and low-power digital circuit operation is described. This logic family was realized with the same technology used to produce emitter-coupled-logic/current-mode-logic (ECL/CML) circuits. The logic operation was demonstrated with a 19-stage ring oscillator and a frequency divider. A gate delay of 160 ps was measured with 1.1 mW of power per gate. The divider worked properly up to 6 GHz. Layouts of a DHL flip-flop and divider showed that circuit area and transistor count can be reduced by about a factor of 3, relative to ECL/CML circuits. The new logic approach allows monolithic integration of high-speed ECL/CML circuits with high-density DHL circuits with high-density DHL circuits  相似文献   

18.
Submicrometer-channel CMOS devices have been integrated with self-aligned double-polysilicon bipolar devices showing a cutoff frequency of 16 GHz. n-p-n bipolar transistors and p-channel MOSFETs were built in an n-type epitaxial layer on an n+ buried layer, and n-channel MOSFETs were built in a p-well on a p+ buried layer. Deep trenches with depths of 4 μm and widths of 1 μm isolated the n-p-n bipolar transistors and the n- and p-channel MOSFETs from each other. CMOS, BiCMOS, and bipolar ECL circuits were characterized and compared with each other in terms of circuit speed as a function of loading capacitance, power dissipation, and power supply voltage. The BiCMOS circuit showed a significant speed degradation and became slower than the CMOS circuit when the power supply voltage was reduced below 3.3 V. The bipolar ECL circuit maintained the highest speed, with a propagation delay time of 65 ps for CL=0 pF and 300 ps for CL=1.0 pF with a power dissipation of 8 mW per gate. The circuit speed improvements in the CMOS circuits as the effective channel lengths of the MOS devices were scaled from 0.8 to 0.4 μm were maintained at almost the same ratio  相似文献   

19.
A standard cell library for MSI circuits is described. It is based on buffered FET logic (BFL) with 1-μm gate-length MESFET transistors. It contains gates, buffers, master-slave flip-flops, and ECL interfaces and it has been optimized to operate over the military temperature range. It is fully compatible with ECL circuits (signal level and power supply). Typical propagation delay is 80 ps for an inverter (FI=FO=1) and power dissipation is 5 mW per BFL cell. A realistic printed circuit board for test and demonstration is proposed  相似文献   

20.
This paper presents high-speed differential input and output (I/O) interface circuits for gigabit-per-second serial data communication. The circuits are implemented in a 3.3-V/0.35-μm CMOS process. Signal levels are compatible with industry standards for low-voltage positive emitter-coupled logic (ECL), with the possibility of ac-coupling to standard ECL systems. A differential open-drain circuit with pulsed bias and active pullups offers significantly improved speed performance for a transmitter and creates wide open eye patterns. Combining circuit techniques with the features of a submicrometer technology, the presented I/O blocks enable a full-CMOS chip to communicate with high-speed ECL-compatible systems and ease up a common I/O-related speed bottleneck. The circuits operate at 622 Mb/s (OC-12) and 1.24 Gb/s (OC-24) in a repeater and a retimer configuration. The asynchronous performance of the receiver and the transmitter was tested at rates up to 2.5 Gb/s  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号