首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
We demonstrate for the first time the feasibility in conducting the graft copolymerization of methylmethacrylate (MMA) with cellulose by the means of the reversible addition‐fragmentation chain transfer (RAFT) polymerization in an ionic liquid [1‐N‐butyl‐3‐methylimidazolium chloride] (BMIMCl). Cellulose was first converted to a macromolecular chain transfer agent to which MMA was grafted by RAFT in BMIMCl. The success of the occurrence of different reactions was validated by elemental analyses, Fourier transform infrared and nuclear magnetic resonance spectroscopies. The results demonstrate that the MMA polymer chains were grafted onto the cellulose while the use of the ionic liquid as a reaction medium enhanced the polymerization rate to a moderate extent. Gel permeation chromatography analysis of poly(MMA) chains cleaved from the cellulose by acidic hydrolysis indicated low polydispersity indices (ca. 1.3) that were consistent with the “living” nature of the RAFT. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

2.
A series of amphiphilic poly(N‐vinyl carbazole) (PVK) block copolymers containing tris(8‐hydroxyquinoline) aluminum (Alq3) have been synthesized via reversible addition‐fragmentation chain transfer (RAFT) radical polymerization with trithiocarbonate terminated polyethylene glycol (PEG) as a RAFT agent. The chemical structures of the block copolymers have been identified by 1H nuclear magnetic resonance and Fourier transform infrared spectrometer. The analysis of gel permeation chromatography indicates that the polydispersity indices of the block copolymers are lower than 1.30. The results of thermogravimetric analysis show that the decomposition temperatures of the copolymers are higher than 330 °C. The optical properties of the copolymers have been investigated and the obviously enhanced emission from Alq3 has been found due to resonance energy transfer from PVK to Alq3. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44573.  相似文献   

3.
Low polydispersity polydimethylsiloxane (PDMS) was end functionalized with a reversible addition fragmentation chain transfer (RAFT) agent by the esterification of hydroxyl terminated PDMS with a carboxylic acid functional RAFT agent. These PDMS‐RAFT agents were able to control the free radical polymerization of styrene and substituted styrene monomers to produce PDMS‐containing block copolymers with low polydispersities and targeted molecular weights. A thin film of polydimethylsiloxane‐block‐polystyrene was prepared by spin coating and exhibited a microphase separated morphology from scanning force microscopy measurements. Controlled swelling of these films in solvent vapor produced morphologies with significant long‐range order. This synthetic route will allow the straightforward production of PDMS‐containing block copolymer libraries that will be useful for investigating their thin film morphological behavior, which has applications in the templating of nanostructured materials.© 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

4.
The validity of simplifying the reversible addition‐fragmentation chain transfer (RAFT) polymerization as a degenerative chain transfer process was verified in this work. The simplified chain transfer mechanism enabled the direct modeling investigation of chain transfer coefficient in the RAFT polymerization. It also gave the analytical expressions for concentration, chain length, and polydispersity of various chain species. The comparison between the simulations based on chain transfer mechanism and those from general RAFT mechanism showed that this simplified mechanism can accurately predict RAFT polymerization in the absence of side reactions to adduct radicals other than fragmentation. However, significant errors are introduced at high conversion when side reactions to adduct are present. The chain transfer coefficient of RAFT agent is the key factor in RAFT polymerization. The polydispersity is more sensitive to chain transfer coefficient at low conversion. At high conversion, however, the polydispersity is mainly determined by termination, which can be controlled by RAFT agent concentration and the selection of initiator. At last, an analytical equation is derived to directly estimate chain transfer coefficient of RAFT agent from the experimental data. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011.  相似文献   

5.
One‐step synthesis of star copolymers by reversible addition–fragmentation chain transfer (RAFT) and ring‐opening polymerization (ROP) by using a novel dual initiator is reported. Triarm block copolymers comprising one polystyrene (or polyacrylamide) arm and two poly(β‐butyrolactone) arms were synthesized in one‐step by simultaneous RAFT polymerization of styrene (St) (or acrylamide, designated as AAm) and ROP of β‐butyrolactone (BL) in the presence of a novel trifunctional initiator, 1,2‐propanediol ethyl xanthogenate (RAFT‐ROP agent). This dual initiator was obtained through the reaction of 3‐chloro‐1,2‐propanediol with the potassium salt of ethyl xanthogenate. The principal parameters such as monomer concentration, initiator concentration, and polymerization time that affect the one‐step polymerization reaction were evaluated. The characterization of the products was achieved using Fourier‐transform infrared spectroscopy (FTIR), 1H‐nuclear magnetic resonance (1H‐NMR), 13C‐nuclear magnetic resonance (13C‐NMR), Gas chromatography–mass spectrometry (GC–MS), gel‐permeation chromatography (GPC), thermogravimetric analysis (TGA), and fractional precipitation (γ) techniques. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

6.
Two novel dithiocarbamates [2‐Y‐benzoimidazole‐1‐carbodithioic acid benzyl esters: Y = methyl (1b) or phenyl (1c)] were synthesized and successfully used in the reversible addition–fragmentation chain transfer (RAFT) polymerization of styrene in bulk with thermal initiation. The effects of the temperatures and concentration ratios of the styrene and RAFT agents on the polymerization were investigated. The results showed that the polymerization of styrene could be well controlled in the presence of 1b or 1c. The linear relationships between ln([M]0/[M]) and the polymerization time (where [M]0 is the initial monomer concentration and [M] is the monomer concentration) indicated that the polymerizations were first‐order reactions with respect to the monomer concentration. The molecular weights increased linearly with the monomer conversion and were close to the theoretical values. The molecular weight distributions [weight‐average molecular weight/number‐average molecular weight (Mw/Mn)] were very narrow from 5.3% conversion up to 94% conversion (Mw/Mn < 1.3). © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 560–564, 2006  相似文献   

7.
Reversible addition‐fragmentation chain transfer (RAFT) polymerization was used successfully to synthesize temperature‐responsive poly(N‐isopropylacrylamide) (PNIPAAm), poly(methacrylic acid) (PMAA), and their temperature‐responsive block copolymers. Detailed RAFT polymerization kinetics of the homopolymers was studied. PNIPAAm and PMAA homopolymerization showed living characteristics that include a linear relationship between M n and conversion, controlled molecular weights, and relatively narrow molecular weight distribution (PDI < 1.3). Furthermore, the homopolymers can be reactivated to produce block copolymers. The RAFT agent, carboxymethyl dithiobenzoate (CMDB), proved to control molecular weight and PDI. As the RAFT agent concentration increases, molecular weight and PDI decreased. However, CMDB showed evidence of having a relatively low chain transfer constant as well as degradation during polymerization. Solution of the block copolymers in phosphate buffered saline displayed temperature reversible characteristics at a lower critical solution temperature (LCST) transition of 31°C. A 5 wt % solution of the block copolymers form thermoreversible gels by a self‐assembly mechanism above the LCST. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 1191–1201, 2006  相似文献   

8.
A well‐defined graft copolymer, polystyrene‐graft‐poly(methyl methacrylate), was synthesized in two steps. In the first step, styrene and p‐vinyl benzene sulfonyl chloride were copolymerized via reversible addition–fragmentation chain transfer polymerization (RAFT) in benzene at 60 °C with 2‐(ethoxycarbonyl)prop‐2‐yl dithiobenzoate as a chain transfer agent and 2,2′‐azobis(isobutyronitrile) as an initiator. In the second step, poly[styrene‐cop‐(vinyl benzene sulfonyl chloride)] was used as a macroinitiator for the atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) in toluene at 80 °C with CuCl as a catalyst and 2,2′‐bipyridine as a ligand. With sulfonyl chloride groups as the initiating sites for the ATRP of MMA, high initiation efficiencies were obtained. Copyright © 2006 Society of Chemical Industry  相似文献   

9.
The kinetics of ab initio reversible addition‐fragmentation chain transfer (RAFT) emulsion polymerization of styrene using oligo(acrylic acid‐b‐styrene) trithiocarbonate as both polymerization mediator and surfactant were systematically investigated. The initiator concentration was set much lower than that in the conventional emulsion polymerization to significantly suppress the irreversible termination reaction. It was found that decreased rapidly but the nucleation efficiency of micelles increased with the decrease of the initiator concentrations due to the significant radical exit. The particle number ( ) did not follow the classic Smith–Eward equation but was proportional to [I]?0.4[S]0.7. It was suggested that RAFT emulsion polymerization could be fast enough for commercial use even at extremely low initiator concentrations and low macro‐RAFT agent concentrations due to the higher particle nucleation efficiency at lower initiator concentration. © 2016 American Institute of Chemical Engineers AIChE J, 62: 2126–2134, 2016  相似文献   

10.
BACKGROUND: Controlled/‘living’ radical polymerization is a new and robust method to synthesize polymers with predetermined molecular weight, narrow polydispersity and tailored architecture. Several methods have been developed but reversible addition‐fragmentation chain transfer (RAFT) has several advantages over the other methods. It has been reported that the effectiveness of RAFT agents depends strongly on the nature of the Z and R groups. RESULTS: Three new dithiocarbamates, namely (2‐ethoxy carbonyl)‐prop‐2‐yl‐pyrrole‐1‐carbodithioate (CTA‐A), (1‐phenyl ethyl)‐pyrazole‐1‐carbodithioate (CTA‐B) and (2‐ethoxy carbonyl)‐prop‐2‐yl‐pyrazole‐1‐carbodithioate (CTA‐C), were synthesized for studying the effect of the Z and R group of a chain transfer agent on the RAFT polymerization of styrene, initiated by 2,2′‐azobisisobutyronitrile. Well‐controlled molecular weight with narrow polydispersity (1.10–1.46) was achieved. The increase in molecular weight with conversion is linear and follows first‐order kinetics. CONCLUSION: The detailed kinetic results show that the structure of the activating (Z) group of dithiocarbamates has significant effects on the reactivity of dithiocarbamates towards the polymerization of styrene. In the homopolymerization of styrene it was found that, from the polydispersity index of polystyrenes obtained and the kinetic results, the pyrazole‐based dithiocarbamates (CTA‐B and CTA‐C) are very effective compared to the pyrrole‐based dithiocarbamate (CTA‐A). All the polymerizations show controlled living characters. Copyright © 2007 Society of Chemical Industry  相似文献   

11.
In this study, 2‐hydroxyethyl methacrylate and N‐isopropyl acrylamide was block grafted onto the polypropylene macroporous membrane surface by photo‐induced reversible addition‐fragmentation chain transfer (RAFT) radical polymerization with benzyl dithiobenzoate as the RAFT agent. The degree of grafting of poly(2‐hydroxyethyl methacrylate) on the membrane surface increased with UV irradiation time and decreased with the chain transfer agent concentration increasing. The poly(2‐hydroxyethyl methacrylate)‐ grafted membranes were used as macro chain transfer agent for the further block graft copolymerization of N‐isopropyl acrylamide in the presence of free radical initiator. The degree of grafting of poly(N‐isopropyl acrylamide) increased with reaction time. Furthermore, the poly(2‐hydroxyethyl methacrylate)‐ grafted membrane with a degree of grafting of 0.48% (wt) showed the highest relative pure water flux and the best antifouling characteristics of protein dispersion. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

12.
Emulsifier‐free batch emulsion polymerization of n‐butyl acrylate and its semi‐batch copolymerization with 2,2,3,3,4,4,5,5‐octafluoropentyl acrylate and 2,2,3,4,4,4‐hexafluorobutyl acrylate both mediated by poly(acrylic acid) containing the trithiocarbonate group in the chain was employed to produce amphiphilic triblock copolymers. The polymerization‐induced self‐assembly of these copolymers in aqueous media gave rise to spherical core–shell particles. Irrespective of the experimental conditions, the polymeric product was characterized by a bimodal molecular weight distribution. The apparent violation of the reversible addition–fragmentation chain transfer polymerization mechanism may be attributed to restricted accessibility of the trithiocarbonate group in the self‐assembled block copolymers for propagating radicals that enter into the particle. Mean‐field theoretical arguments were employed to explain the exclusively spherical morphology of the particles observed in the experiment. © 2019 Society of Chemical Industry  相似文献   

13.
A new ionic crosslinked polymer hydrogel was achieved by the strategy of ionically crosslinking α,ω‐dibromide terminated polystyrene (Br‐PS‐Br) with poly(4‐vinyl pyridine) (P4VP) which was synthesized by reversible addition‐fragmentation chain transfer polymerization using a chain transfer agent containing a trithiocarbonate moiety. The moiety of trithiocarbonate was introduced into the crosslinked network to show the self‐healing characteristics. The chain structure and components of Br‐PS‐Br and P4VP were characterized through 1H NMR, gel permeation chromatography, Fourier transform IR spectroscopy and elemental analysis. The P4VP (Mn = 25 300 g mol?1) chains were crosslinked with Br‐PS‐Br (Mn = 2000 g mol?1) through the quaternization reaction to form a polymer network which was further crosslinked in acetonitrile by irradiation of UV light to fabricate a hydrogel. Such a hydrogel of P4VP/Br‐PS‐Br cut by a razor blade can be rapidly (1 h) and repeatedly (three times) healed through a reshuffling reaction of the trithiocarbonate moiety under irradiation by UV light. © 2018 Society of Chemical Industry  相似文献   

14.
Polymerizations of methylacrylate, styrene and methyl methacrylate were carried out in the presence dithiobenzoic acid (DTBA). The results exhibit controlled polymerization characters: well‐controlled molecular weight, narrow molecular weight distribution (minimal value: 1.08), molecular weight linearly increasing with conversion and first‐order kinetics of polymerization. The polymers were characterized by 1H NMR and GPC. The effect of temperature and molar ratio DTBA/AIBN on polymerization was investigated. A mechanism is proposed to explain the controlled polymerization characters. © 2000 Society of Chemical Industry  相似文献   

15.
A series of methyl acrylate‐acrylic acid amphiphilic triblock copolymers (PMA‐PAA‐PMA) were prepared by solution polymerization using S,S′‐bis (α,α‐dimethy1acetic acid) trithiocarbonate (BDAT) as a reversible addition fragmentation chain transfer (RAFT) agent and methyl acrylate (MA) as the first monomer. The triblock copolymers and their common MA homopolymer precursors were characterized in terms of their compositions, molecular weights and behavior at the air–water interface using 1H‐NMR spectroscopy, thermogravimetric analysis, gel permeation chromatography, surface tension, transmission electron microscopy (TEM) and dynamic light scattering respectively. The results indicated that PMA‐PAA‐PMA was successfully synthesized through RAFT polymerization. The polydispersity index (PDI) decreased when the molar ratio [n(MA)/n(AA)] increased, the lowest PDI was obtained at 5.23 wt% RAFT and the molecular weights were consistent with the theoretical value as the RAFT agent percentage varied. The polymer neutralized by sodium hydroxide solution shows a low critical micelle concentration (CMC), which was <10?2 mol L?1 in water. The Amin values increased and showed a maximum with decreased AA chain length. TEM showed that the neutralized polymer formed a special vesicle structure with large pore structure which led to a low CMC and surface tension of water.  相似文献   

16.
The synthetic route for the preparation of α,ω‐isocyanate‐telechelic poly(methyl methacrylate‐co‐acryloxysuccinimide) and α,ω‐ isocyanate‐telechelic poly(methyl methacrylate‐co‐acrylamidohexanoic succinimide) soft segments is presented. The strategy includes reversible addition fragmentation chain transfer (RAFT) copolymerization and two post polymerization modification steps. The RAFT polymerizations result in copolymers with an activated ester proportion within the polymer chains of 8% N‐acryloxysuccinimide and 5% 6‐acrylamidohexanoic succinimide. The reactivity ratios of the monomer pairs were determined. In a first post polymerization reaction carboxylic acid homo telechelic polymers were prepared by reacting the ω‐dithiobenzoate end‐group with an excess of azobis(cyanovaleric acid). In a second modification step the α‐ and ω‐carboxylic acid end‐groups were reacted with hexamethylene diisocyanate and 100% isocyanate telechelic copolymers were obtained. Finally segmented polyurethanes were prepared by coupling hexamethylene diisocyanate (HDI) end capped soft segments with hard segments composed of 1,4‐butanediol and HDI. © 2013 Society of Chemical Industry  相似文献   

17.
5,10,15,20‐tetra(4‐hydroxyphenyl)porphyrin (THPP) was synthesized by the condensation of pyrrole with 4‐hydroxybenzaldehyde in the presence of solvent (propionic acid). Subsequently, the resulting THPP was converted to a tetrafunctional star‐shaped macroinitiator (porphyrin‐Br4) by esterification of it with 2‐bromopropanoyl bromide, and then atom transfer radical polymerization (ATRP) of styrene was conducted at 110°C with CuCl/2,2′‐bipyridine as the catalyst system. The resulting product was reacted with NBS to obtain star‐shaped initiator porphyrin‐(PSt‐Br)4, which was used the following ATRP of the GMA to synthesize star–comb‐shaped grafted polymer porphyrin‐(PSt‐g‐PGMA)4. The number molecular weight was 2.3 × 104 g/mol, and the dispersity was narrow (Mw/Mn = 1.32). The structure of the polymers was investigated by NMR, UV–vis, IR, and GPC measurement. The self‐assembly behavior of the polymer porphyrin‐(PSt‐g‐PGMA)4 was studied by DLS and AFM. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

18.
Branched polyacrylonitriles were prepared via the one‐pot radical copolymerization of acrylonitirle and an asymmetric divinyl monomer (allyl methacrylate) that possesses both a higher reactive methacrylate and a lower reactive allyl. RAFT technique was used to keep a low‐propagation chain concentration via a fast reversible chain transfer euilibration and thus the cross‐linking was prevented until a high level of monomer conversions. This novel strategy was demonstrated to engenerate a branched architecture with abundant pendant functional vinyl and nitrile groups, and controlled molecular weight as a behavior of controlled/living radical polymerization characteristics. The effect of the various experimental parameters, including temperature, brancher to monomer molar ratio, and chain transfer agent to initiator molar ratio, on the control of moleculer dimension (molecular weight and polydispersity indices) and the degree of branching were investigated in detail. Moreover, 1H NMR and gel permeation chromatography confirm the branched architecture of the resultant polymer. The intrinsic viscosity of the copolymer is also lower than the linear counterpart.© 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

19.
20.
Development of new chemosensors that are selective and sensitive to Cu2+ and CN? ions, especially in aqueous media, is of tremendous importance. We report the synthesis of a new block copolymer that is capable of highly selective and sensitive detection of Cu2+ and CN? ions in aqueous media. Poly(t‐butylacrylate)‐block‐poly(3‐bromopropylacrylate) was prepared using the reversible addition–fragmentation chain transfer polymerization technique. This block copolymer was reacted with 2,4‐dihydroxybenzaldehyde followed by reaction with rhodamine B hydrazide for successful incorporation of the desired rhodamine units into the block copolymer structure. Cu2+‐induced opening of the spirolactam ring of the rhodamine units resulted in rapid and easily noticeable colour change, thus enabling a highly selective detection of Cu2+ ions in aqueous media for concentrations as low as 2 µmol L?1. We further demonstrate that this Cu2+ bound polymer complex can further act as a selective and sensitive sensing platform for CN? in aqueous media with concentrations <1 µmol L?1 (0.06 ppm). Moreover, the polymer can also be used to remove Cu2+ from aqueous media. © 2014 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号