共查询到20条相似文献,搜索用时 15 毫秒
1.
Tao Cheng You‐Wei Wu Ya‐Li Chen Yi‐Zhou Zhang Wen‐Yong Lai Wei Huang 《Small (Weinheim an der Bergstrasse, Germany)》2019,15(34)
Flexible planar micro‐supercapacitors (MSCs) with unique loose and porous nanofiber‐like electrode structures are fabricated by combining electrochemical deposition with inkjet printing. Benefiting from the resulting porous nanofiber‐like structures, the areal capacitance of the inkjet‐printed flexible planar MSCs is obviously enhanced to 46.6 mF cm?2, which is among the highest values ever reported for MSCs. The complicated fabrication process is successfully averted as compared with previously reported best‐performing planar MSCs. Besides excellent electrochemical performance, the resultant MSCs also show superior mechanical flexibility. The as‐fabricated MSCs can be highly bent to 180° 1000 times with the capacitance retention still up to 86.8%. Intriguingly, because of the remarkable patterning capability of inkjet printing, various modular MSCs in serial and in parallel can be directly and facilely inkjet‐printed without using external metal interconnects and tedious procedures. As a consequence, the electrochemical performance can be largely enhanced to better meet the demands of practical applications. Additionally, flexible serial MSCs with exquisite and aesthetic patterns are also inkjet‐printed, showing great potential in fashionable wearable electronics. The results suggest a feasible strategy for the facile and cost‐effective fabrication of high‐performance flexible MSCs via inkjet printing. 相似文献
2.
Liming Xie Xueying Xiong Qiaowen Chang Xiaolian Chen Changting Wei Xia Li Meng Zhang Wenming Su Zheng Cui 《Small (Weinheim an der Bergstrasse, Germany)》2019,15(16)
Quantum dots light‐emitting diodes (QLEDs) have attracted much interest owing to their compatibility with low‐cost inkjet printing technology and potential for use in large‐area full‐color pixelated display. However, it is challenging to fabricate high efficiency inkjet‐printed QLEDs because of the coffee ring effects and inferior resistance to solvents from the underlying polymer film during the inkjet printing process. In this study, a novel crosslinkable hole transport material, 4,4′‐bis(3‐vinyl‐9H‐carbazol‐9‐yl)‐1,1′‐biphenyl (CBP‐V) which is small‐molecule based, is synthesized and investigated for inkjet printing of QLEDs. The resulting CBP‐V film after thermal curing exhibits excellent solvent resistance properties without any initiators. An added advantage is that the crosslinked CBP‐V film has a sufficiently low highest occupied molecular orbital energy level (≈?6.2 eV), high film compactness, and high hole mobility, which can thus promote the hole injection into quantum dots (QDs) and improve the charge carrier balance within the QD emitting layers. A red QLED is successfully fabricated by inkjet printing a CBP‐V and QDs bilayer. Maximum external quantum efficiency of 11.6% is achieved, which is 92% of a reference spin‐coated QLED (12.6%). This is the first report of such high‐efficiency inkjet‐printed multilayer QLEDs and demonstrates a unique and effective approach to inkjet printing fabrication of high‐performance QLEDs. 相似文献
3.
4.
5.
6.
Joo Yeon Kim Chiara Ingrosso Vahid Fakhfouri Marinella Striccoli Angela Agostiano M. Lucia Curri Jurgen Brugger 《Small (Weinheim an der Bergstrasse, Germany)》2009,5(9):1051-1057
Inkjet technology is a compelling method for the flexible and cost‐effective printing of functional inks. We show that nanocomposite solutions based on polystyrene and differently sized core/shell‐type nanocrystals (NCs) formed by a CdSe core coated with a shell of ZnS (CdSe@ZnS) in a single solvent, chloroform, can be reliably dispensed into luminescent, multicolor pixel arrays. This study demonstrates the relevance of parameters like polymer concentration and nozzle diameter, highlighting how the optimal conditions to print NCs embedded in 5 wt% polystyrene nanocomposite are given by a 70‐µm‐diameter nozzle. The obtained structures show that the bright size‐dependent emission of the NCs in the nanocomposite is retained in the printed pixels. 相似文献
7.
Frederic S. F. Brossard Vincenzo Pecunia Andrew J. Ramsay Jonathan P. Griffiths Maxime Hugues Henning Sirringhaus 《Advanced materials (Deerfield Beach, Fla.)》2017,29(47)
The last decade has witnessed the rapid development of inkjet printing as an attractive bottom‐up microfabrication technology due to its simplicity and potentially low cost. The wealth of printable materials has been key to its widespread adoption in organic optoelectronics and biotechnology. However, its implementation in nanophotonics has so far been limited by the coarse resolution of conventional inkjet‐printing methods. In addition, the low refractive index of organic materials prevents the use of “soft‐photonics” in applications where strong light confinement is required. This study introduces a hybrid approach for creating and fine tuning high‐Q nanocavities, involving the local deposition of an organic ink on the surface of an inorganic 2D photonic crystal template using a commercially available high‐resolution inkjet printer. The controllability of this approach is demonstrated by tuning the resonance of the printed nanocavities by the number of printer passes and by the fabrication of photonic crystal molecules with controllable splitting. The versatility of this method is evidenced by the realization of nanocavities obtained by surface deposition on a blank photonic crystal. A new method for a free‐form, high‐density, material‐independent, and high‐throughput fabrication technique is thus established with a manifold of opportunities in photonic applications. 相似文献
8.
Craig A. Milroy Seonpil Jang Toshihiko Fujimori Ananth Dodabalapur Arumugam Manthiram 《Small (Weinheim an der Bergstrasse, Germany)》2017,13(11)
Improved thin‐film microbatteries are needed to provide appropriate energy‐storage options to power the multitude of devices that will bring the proposed “Internet of Things” network to fruition (e.g., active radio‐frequency identification tags and microcontrollers for wearable and implantable devices). Although impressive efforts have been made to improve the energy density of 3D microbatteries, they have all used low energy‐density lithium‐ion chemistries, which present a fundamental barrier to miniaturization. In addition, they require complicated microfabrication processes that hinder cost‐competitiveness. Here, inkjet‐printed lithium–sulfur (Li–S) cathodes for integrated nanomanufacturing are reported. Single‐wall carbon nanotubes infused with electronically conductive straight‐chain sulfur (S@SWNT) are adopted as an integrated current‐collector/active‐material composite, and inkjet printing as a top‐down approach to achieve thin‐film shape control over printed electrode dimensions is used. The novel Li–S cathodes may be directly printed on traditional microelectronic semicoductor substrates (e.g., SiO2) or on flexible aluminum foil. Profilometry indicates that these microelectrodes are less than 10 µm thick, while cyclic voltammetry analyses show that the S@SWNT possesses pseudocapacitive characteristics and corroborates a previous study suggesting the S@SWNT discharge via a purely solid‐state mechanism. The printed electrodes produce ≈800 mAh g?1 S initially and ≈700 mAh g?1 after 100 charge/discharge cycles at C/2 rate. 相似文献
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
Uniform Spread of High‐Speed Drops on Superhydrophobic Surface by Live‐Oligomeric Surfactant Jamming
Siqi Luo Zhidi Chen Zhichao Dong Yaxun Fan Yao Chen Bin Liu Cunlong Yu Chuxin Li Haoyu Dai Haofei Li Yilin Wang Lei Jiang 《Advanced materials (Deerfield Beach, Fla.)》2019,31(41)
Inkjet printing of water‐based inks on superhydrophobic surfaces is important in high‐resolution bioarray detection, chemical analysis, and high‐performance electronic circuits and devices. Obtaining uniform spreading of a drop on a superhydrophobic surface is still a challenge. Uniform round drop spreading and high‐resolution inkjet printing patterns are demonstrated on superhydrophobic surfaces without splash or rebound after high‐speed impacting by introducing live‐oligomeric surfactant adhesion. During impact, the live‐oligomeric surfactant molecules aggregate into dynamic, wormlike micelle networks, which jam at the solid–liquid interface by entangling with the surface micro/nanostructures to pin the contact line and jam at the spreading periphery to keep the uniform spreading lamellar shape. This efficient uniform spreading of high‐speed impact drops opens a promising avenue to control drop impact dynamics and achieve high‐resolution printing. 相似文献