共查询到17条相似文献,搜索用时 8 毫秒
1.
The effect of prior deformation on stress corrosion cracking (SCC) growth rates of Alloy 600 materials in a simulated pressurized water reactor primary water environment is studied. The prior deformation was introduced by welding procedure or by cold working. Values of Vickers hardness in the Alloy 600 weld heat-affected zone (HAZ) and in the cold worked (CW) Alloy 600 materials are higher than that in the base metal. The significantly hardened area in the HAZ is within a distance of about 2-3 mm away from the fusion line. Electron backscatter diffraction (EPSD) results show significant amounts of plastic strain in the Alloy 600 HAZ and in the cold worked Alloy 600 materials. Stress corrosion cracking growth rate tests were performed in a simulated pressurized water reactor primary water environment. Extensive intergranular stress corrosion cracking (IGSCC) was found in the Alloy 600 HAZ, 8% and 20% CW Alloy 600 specimens. The crack growth rate in the Alloy 600 HAZ is close to that in the 8% CW base metal, which is significantly lower than that in the 20% CW base metal, but much higher than that in the as-received base metal. Mixed intergranular and transgranular SCC was found in the 40% CW Alloy 600 specimen. The crack growth rate in the 40% CW Alloy 600 was lower than that in the 20% CW Alloy 600. The effect of hardening on crack growth rate can be related to the crack tip mechanics, the sub-microstructure (or subdivision of grain) after cross-rolling, and their interactions with the oxidation kinetics. 相似文献
2.
3.
将Al-21%Si(质量分数)合金在750~1 200℃分别重熔保温20、40、60、80、100和120 min后铜模快冷及重熔保温120 min后空冷,采用光学显微镜观察分析合金中初晶硅形态与尺寸的变化,对Al-21%Si合金中的初晶硅的溶解动力学进行分析。结果表明:过热温度越高,初晶硅尺寸越细小。在铜模快凝条件下,在750和850℃重熔时,保温时间对初晶硅颗粒尺寸的影响较大;在950~1 200℃重熔时,保温时间对初晶硅颗粒尺寸基本没有影响。当合金空冷时,即使过热温度足够高也不能获得细小的初晶硅组织,较高的过热温度和较快的冷却速度有利于消除过共晶铝硅合金中粗大初晶硅的遗传现象和获得细小的初晶硅。短时重熔实验和溶解动力学分析表明,当合金在1 200℃重熔并保温7~10 min后就可以使Al-21%Si合金中的初晶硅基本溶解。当重熔温度为950℃时,需要保温1.4~1.7 h才能使初晶硅得到溶解。 相似文献
4.
5.
6.
A low carbon, low silicon steel was oxidised at temperatures of 900–1000 °C in flowing N2–H2–H2O gas mixtures in which oxygen and water vapour partial pressures were varied independently. Scales of dense, single‐phase, coarse grained wüstite grew rapidly, according to parabolic kinetics. Both the scaling rate and the oxide grain growth increased with $p_{{\rm O}_{2} } $ at constant $p_{{\rm H}_{2} {\rm O}} $ , and also with $p_{{\rm H}_{2} {\rm O}} $ at constant $p_{{\rm O}_{2} } $ . An inert marker experiment showed that significant oxygen transport but majority metal transport supported scale growth. Gas composition effects are interpreted using point defect models involving formation of hydroxyl species on anion sites as well as cation vacancies. 相似文献
7.
The reduction of emissions from power generation plants is a key part of the Kyoto Protocol. Reduced emissions per unit of power produced can be achieved via increased thermal efficiency and this can be achieved by increasing steam parameters (i.e. temperature and pressure). Increased steam parameters in turn leads to accelerated corrosion of boiler components. Biomass and solid waste fuels introduce a number of aggressive species into process environments that result in enhanced rates of boiler degradation. This paper reports on studies, both theoretical and experimental, of the corrosion behaviour of high‐alloy steels and Ni‐base alloys as well as coatings for use in high efficiency coal and/or biomass‐ and waste‐fired power plants. Coatings produced within the SUNASPO project have been laboratory tested in gaseous atmospheres representative of coal combustion, biomass combustion and waste incineration. Laboratory tests were carried out mainly in the temperature range 500 °C to 800 °C. Initial results showed the poor performance of traditional uncoated low‐alloy boiler steels P91 (9% Cr) and HCM12A (12% Cr), as well as the higher alloy steel, 17Cr/13Ni. Results show the beneficial effects of coatings containing Al, Si, Al + Si, Al + Ti and Al + B in reducing the rate of corrosive attack. In a combustion product gas containing 100 ppm HCl and 1000 ppm SO2, aluminizing affords corrosion resistance of low‐alloy steels such as HCM12A and P91 similar to that of Alloy 800 over 1000 h of test. The presence of Al inhibits internal, sometimes localized corrosion by promoting the formation of a protective surface oxide layer even at relatively low temperatures. The results of experiments in simulated coal; biomass and waste atmospheres are presented and discussed in terms of both corrosion kinetics and mechanisms of degradation. 相似文献
8.
采用扫描电镜、动电位极化曲线和慢应变速率试验研究了TP439不锈钢的组织形貌及其在高温高压水中的应力腐蚀开裂行为。结果表明:TP439不锈钢的微观组织为典型的铁素体等轴晶粒,晶内分布有一定数量的细小碳化物;3.5%(质量分数)NaCl溶液中,其腐蚀电位为-0.25V(SCE,下同),点蚀电位约为0.18V;三种温度条件下铁素体不锈钢的慢应变拉伸曲线相似,断口形貌主要为韧性断口;温度对铁素体不锈钢在高温高压水中应力腐蚀行为无明显影响,TP439不锈钢在此环境中的应力腐蚀敏感性较低。 相似文献
9.
从电解抛光影响合金表面化学成分与结构的角度出发,利用扫描电镜(SEM)、X射线光电子能谱(XPS)等方法研究了硝酸-甲醇(0℃,10s,3V)和硫酸-磷酸-水(70℃,30s,0.2A/cm2)两种不同电解抛光液对600合金在高温高压水环境中腐蚀行为的影响。结果表明:经硝酸-甲醇溶液抛光后(EPS-1),试样表面的初始产物膜比经硫酸-磷酸-水(EPS-2)溶液抛光后的厚,且EPS-1产物膜中氢氧化物的含量比EPS-2中的高;高温高压水环境腐蚀试验后两种抛光表面都形成双层结构氧化膜,即富铬内层和分散的富镍、铁氧化物颗粒外层;EPS-2产物膜中氢氧化物含量低于EPS-1的且铬含量高于EPS-1的,EPS-2产物膜的致密性和保护性更好,能有效减缓腐蚀进程,形成较薄的氧化膜。分析认为这是由于在两种溶液中电解抛光后样品表面形成了成分与结构不同的初始产物膜。 相似文献
10.
目的 研究304L不锈钢在高温高压水蒸气中的应力腐蚀开裂行为及机理。方法 采用慢应变速率试验分别研究了304L不锈钢在常温常压水、高温高压水、高温高压水蒸气环境中的应力腐蚀开裂行为。利用SEM、三维立体显微镜和XPS,分析试样氧化后断口区域的形貌及元素分布。结果 304L不锈钢在常温常压水中的抗拉强度为730 MPa,拉伸率为94.32%。在高温高压水、高温高压水蒸气环境中的抗拉强度分别为382、379 MPa,拉伸率分别为44.98%、47.38%。304L不锈钢在三种试验环境中慢拉伸后的断口表面布满大量韧窝,断口全貌呈韧性断裂特征,高温高压水、高温高压水蒸气中试样的抗拉强度较常温常压水中明显下降。304L不锈钢在高温高压水环境和水蒸气环境中得到的XPS谱图中各结合能峰位置几乎相同,峰的相对强度因载荷的不同而发生变化。施加载荷后,在高温高压水环境中304L不锈钢表面氧化物中的Cr含量增加,而在高温高压水蒸气环境中的Cr含量略有下降。结论304L不锈钢在高温高压水和高温高压水蒸气环境中具有相似的最大抗拉强度和最大应变值。施加载荷将影响304L不锈钢氧化过程中金属元素扩散的速度,进而影响氧化产物的成分。 相似文献
11.
针对Inconel 600和Inconel 690合金在高温高压水环境中生成的腐蚀氧化膜,提出了扩散路径分析模型,阐明了氧化膜微观结构及其形成机理。基于氧化膜成分、合金成分、以及环境因素,构建了Inconel 600及Inconel 690合金的Ni-Cr-H_2O三元相图。Inconel 600合金高温高压水腐蚀的扩散路径表明,其氧化膜由内层Cr_2O_3与外层FeCr_2O_4尖晶石构成。通过Inconel 690合金高温高压水腐蚀的扩散路径分析可知,氧化膜由单一的Cr_2O_3构成。扩散路径分析结果表明,在Inconel 600氧化膜中,O~(2-)比Cr~(3+)具有更高的扩散速率,而在Inconel 690氧化膜中,O~(2-)的迁移率较低,所受阻力较大,从而使得Inconel 600和Inconel 690合金氧化膜呈现出不同的微观结构。 相似文献
12.
The groundwater will completely infiltrate to the surface of nuclear waste container after the closure of its deep geological disposal. Therefore, the corrosion behaviour of Q235 carbon steel, titanium and titanium alloy, which were the candidates as the container materials for high-level nuclear waste disposal in simulated groundwater solution of Beishan to be served as the preselected high-level nuclear waste disposal area in China at different temperatures, was studied through electrochemical methods including open circuit potential, electrochemical impedance spectroscopy and potentiodynamic polarisation curve measurements. The results show that the corrosion rate of titanium and titanium alloy is lower than that of carbon steel at all temperatures, and they are more promising as container materials. Another phenomenon is that higher temperatures facilitate the protection performance of corrosion products compared with lower temperatures. 相似文献
13.
采用高温高压慢应变速率拉伸试验方法(SSRT),研究了饱和氧环境下不同氯离子浓度对304 L不锈钢在高温高压硼锂水介质中氯致应力腐蚀开裂的影响。结果表明:在一定浓度范围内有氧无氯或者有氯无氧环境下,304L不发生应力腐蚀开裂。在空气饱和氧条件下,氯离子浓度在1 mg/L至10 mg/L之间变化时,应力腐蚀敏感性随浓度变化不大;而当氯离子浓度大于20 mg/L时,应力腐蚀敏感性随浓度的增加变化很大,当氯离子浓度为50 mg/L,304L几乎完全为脆性断裂。 相似文献
14.
15.
Performance degradation of solid oxide fuel cells due to chromium volatilization is a well‐investigated issue in the literature. Therefore, retention coatings were developed to distinctly reduce the chromium volatilization. One approach was by alloying with manganese to ferritic steels to form manganese chromium spinel which is reported to decrease chromium volatilization by 61–75%. In the present paper, the volatilization rates of pure manganese chromium spinel ceramics were examined as well as those of the two oxides forming this spinel—pure chromium oxide and pure manganese oxide—in synthetic air containing 10% water vapor (high p(O2)) and argon/hydrogen containing 10% water vapor (low p(O2)) at 850°C, 950°C, and 1,050°C. Chromium oxide showed higher volatilization rates in high p(O2), whereas manganese oxide demonstrated higher volatilization rates in low p(O2). Contradictory to the literature, manganese chromium spinel displayed the highest volatilization rates in both atmospheres and nonlinear kinetics behavior. This deviation from linear behavior can be attributed to diffusion‐controlled volatilization in high p(O2). 相似文献
16.
Aiming to produce polyaniline doped with dodecylbenzene sulfonic acid on a pilot plant scale using a 10 L reactor, the synthesis was optimized on a bench scale using a 23 factorial design, involving the variables: K parameter, DBSA/aniline molar ratio (Q) and final aniline concentration (C). The nominal yield and electrical conductivity were used as control parameters. An ethanol/water (2:5, v/v) solution replaced water as solvent. The samples were characterized by electrical conductivity measurements, infrared spectroscopy, X-ray diffraction, elemental analysis, thermogravimetry and density. The influence of the washing solvent volumes and storage time of oxidizer on the nominal yield and electrical conductivity of PAni/DBSA were also investigated. By using ethanol/water as solvent it was possible to reduce the filtration time, to eliminate the purification step and to control the content of DBSA in the polyaniline bulk, maintaining the principal characteristics, like electrical conductivity and density. The doped polymer was obtained with electrical conductivity in the range of 10−1 to 10−3 S cm−1, depending on the dopant concentration. Freshly purchased ammonium peroxydisulfate must be used for higher yields and better reproducibility. 相似文献
17.
高含水期油田集输系统腐蚀结垢原因及综合防治技术 总被引:3,自引:0,他引:3
系统分析了开发中后期高含水油田集输管线腐蚀结垢的原因,是高液量、高矿化度、高含砂量、富含成垢离子、异型水混输、输液介质及压力温度变化等.采用非金属管线替代普通钢管线、一站双线流程、异水型水分输、旧管线修复内衬防腐、大站分水、酸洗清垢、化学防垢等综合配套技术,使管线腐蚀结垢状况得到较大改善,提高了集油管线的有效使用周期. 相似文献