共查询到20条相似文献,搜索用时 10 毫秒
1.
This paper investigates the effects of passenger blockage on smoke flow properties in longitudinally ventilated tunnel fires. A series of numerical simulations were conducted in a 1/5 small-scale tunnel with the different heat release rates (50-100 kW), longitudinal ventilation velocities (0.5-1 m/s), passenger blockage lengths (2-6 m), and ratios (0.17-0.267). The typical smoke flow properties in different tunnel fire scenarios are analyzed, and the results show that under the same heat release rate and longitudinal ventilation velocity, the smoke back-layering length, maximum smoke temperature, and downstream smoke layer height decrease with increasing passenger blockage length or ratio. The Li correlations can well predict the smoke back-layering length and maximum smoke temperature in tunnel fire scenarios without the passenger blockage. When the passenger blockage exists, the modified local ventilation velocity that takes the blockage length and ratio into account has been proposed to correct the Li correlations. The smoke back-layering length and maximum smoke temperature with the different blockage lengths and ratios can be predicted by the modified correlations, which are shown to well reproduce the simulation results. 相似文献
2.
This study investigated the efficacy of the full transverse exhaust method for smoke extraction in tunnel fires. It examines factors such as the number and layout of air supply and exhaust outlets, analyzing their impact on smoke spread, tunnel temperature, visibility, and airflow. The results demonstrate that the full transverse exhaust method effectively controls smoke emissions in raised highway tunnels. It limits smoke spread, reduces tunnel temperature, and effectively controls the fire-affected area. The number and layout of outlets significantly influence smoke dispersion, with fewer exhaust outlets providing better smoke control and optimizing the tunnel environment. However, insufficient outlets disrupt gas flow stability. The position of exhaust outlets affects smoke distribution, and caution is advised to prevent directing fresh air flow toward the fire. Opening an equal number of exhaust outlets on one side of the fire source yields superior smoke extraction results, reducing tunnel ceiling temperatures and minimizing risks to personnel and structures. Though stabilization may take longer, this configuration proves advantageous. The study offers valuable insights and practical guidelines for implementing the full transverse smoke control method in real-world scenarios. 相似文献
3.
Based on large eddy simulation, a series of long tunnel fire experiments with different heat release rates (HRRs) and altitudes were carried out. The vertical temperature and thickness of fire smoke are studied. The simulation results show that the higher the altitude, the lower the flame temperature rise, while the change of smoke plume temperature rise is opposite. The movement of smoke in the tunnel can be divided into four regions, and the smoke layer thickness in the longitudinal direction of the tunnel corresponds to the latter three regions. The thickness in Region II increases along the longitudinal direction, the thickness in Region III is a constant value, and the thickness in Region IV increases along the longitudinal direction. Besides, the change of altitude only has an effect on the smoke layer thickness in Region IV. Then, by considering the altitude, HRR, and smoke layer thickness, and using dimensional analysis, an empirical formula for predicting the smoke layer thickness under the influence of altitude in Region IV was established. 相似文献
4.
Zhisheng Xu Jiaming Zhao Qiulin Liu Hongguang Chen Yaohui Liu Zhongyang Geng Lu He 《火与材料》2019,43(3):303-309
A series of experiments were carried out in a model‐scale tunnel with dimension of 6.0 m × 1.0 m × 0.7 m to investigate the smoke spread behaviors and the typical smoke layer height. Alcohol was employed as fuel, and the heat release rate was set to be 9.5, 18.4, 30.1, and 63.5 kW, respectively. The temperature profile in the tunnel was measured, and the buoyant flow stratification conditions were visualized by a laser sheet. The experiment results show that the N percentage rule would greatly influence by subjective factors. As the N (10, 20, 30) value increases, the smoke layer height also increases. The results calculated by the buoyancy frequency method were more accurate. Fan's prediction method (Fan WC, Wang QG, Jiang FH. Concise Guide of Fire Science. He Fei: University of Science and Technology of China Press; 1995.161 p.) does not accurately evaluate the smoke layer thickness in tunnel fire. An enhanced empirical formula for predicting the smoke layer thickness in the one‐dimensional horizontal spread stage was proposed. It is shown that the empirical formula could well predict the smoke layer thickness by comparing with the experimental data of previous studies. 相似文献
5.
The critical ventilation velocity is almost the most well‐investigated fire phenomenon in the tunnel fire research field whereas previous studies have always investigated it when the fire source is distant from the downstream tunnel exit. Fortunately, a recent study provided a set of data on the critical ventilation velocity for tunnel fires occurring near tunnel exits by small‐scaled experiments, nevertheless, with a lack of further analysis. To demonstrate the relationship of the critical ventilation velocity and the distance between the fire and tunnel exit more explicitly and detailedly, a quantitative and graphical study was carried out and a correlation was presented in this paper. Inspired by this, a set of small‐scaled experiments were carried out to investigate the influence of different longitudinal fire locations on maximum smoke temperature under the tunnel ceiling. Results show that unlike the critical ventilation velocity, the maximum smoke temperature was not obviously affected by longitudinal fire location. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
6.
Understanding smoke temperature distributions and transport characteristics is of great importance to control and exhaust thermal-driven smoke. However, previous studies have focused on this problem in plain areas, whereas ambient pressure decreases as elevation increases. This study investigates the influence of ambient pressure on the hot gas temperature distribution and movement characteristics in a tunnel fire. A series of numerical simulations are carried out in a vehicle tunnel with various heat release rates (HRRs) and ambient pressures. The results show that the maximum temperature and longitudinal temperature distribution under the tunnel ceiling increase with decreasing ambient pressure due to less heat loss caused by lower air density. In addition, the vertical temperatures of the smoke are slightly higher under lower ambient pressure, and this phenomenon makes the smoke spread slightly faster while the smoke layer thickness remains nearly the same under different ambient pressures. The results can provide a reference for tunnel lining design and ventilation arrangements in high-altitude areas. 相似文献
7.
Smoke is the main cause of death in tunnel fires. It is one of the important measures to maintain smoke stratification in the early stage of tunnel fire. This article focused on experimentally studying the combined effect of lateral concentrated smoke extraction and longitudinal ventilation on the smoke stratification, which never be revealed before. The velocity of the smoke layer and air layer, vertical temperature distribution, and the flow patterns of the smoke were measured. It was found that the longitudinal ventilation and lateral concentrated smoke extraction would affect the flow of the smoke and change the shear velocity between the smoke layer and air layer, then, the patterns of the smoke layer will be affected. And the flow patterns with Froude (Fr) number can be classified into three categories: (a)Fr < 0.6 , with stable smoke stratification; (b) 0.6 < Fr < 0.85 , with a stable smoke stratification but the blurring interface; and (c) Fr > 0.85 , the smoke layer is completely unstable. The result can provide a reference for ventilation design of immersed tube tunnels. 相似文献
8.
In a longitudinally ventilated tunnel fire, the backlayering flow propagated in the opposite direction to the air current is the most fatal contaminations to users which are blocked upstream of the fire. In the present paper, numerical simulations were conducted using Fire Dynamic Simulator, which is based on large eddy simulations to estimate the backlayering arrival time in a longitudinally ventilated tunnel fire. The effect of a vehicle obstruction on the backlayering arrival time will be also investigated. For this, a vehicle model occupying about 31% of the tunnel cross section is simulated upstream of the fire source with its location relative to the tunnel floor is varied. The numerical investigation shows that the inertia and the buoyancy forces produced by ventilation and fire, respectively, affect the backlayering spread. The backlayering arrival time increases with the longitudinal ventilation velocity while it decreases with the fire heat release rate. When a vehicle obstruction existed within the tunnel, the numerical results show an increase of backlayering arrival time. This increase is significantly more important with the fire distance when the vehicle obstruction approaches the tunnel floor. Two correlations are developed, with and without obstruction in the tunnel, to predict the backlayering arrival time against the distance to fire. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
9.
Knowledge about the heat release rate (HRR) is essential for studying tunnel fires. The standard method in ISO 9705 is widely applied to calculate the HRR of combustion by measuring the consumption of oxygen in a fire. However, the studies of HRR measurement in full‐scale tunnel fires are rare because of the complication and costs of large experiments. This paper presents a system based on the principle of oxygen consumption calorimetry for the measurement of HRR and total heat release (THR) of full‐scale fires in tunnels. A total of 22 fire experiments are performed in a large‐scale ventilated testing metro tunnel with dimension of 100.0 m × 5.5 m × 5.5 m to validate the reliability and effectiveness of this system. Firstly, four oil spray fire tests are conducted with nozzle flow of 106 L/h at (1 ± 0.1) MW HRR to calibrate the instrumentation. Then, 18 full‐scale fire tests using square diesel pools at five sizes (0.5, 1.0, 2.5, and 5.0 m2) and wood cribs as fire sources are carried out for the measurement of HRR and THR. Results provided by the comparison between the measured HRR and THR values of the fire tests and the theoretically calculated ones show that our system works effectively in the HRR measurement of full‐scale fires in tunnels. 相似文献
10.
为了研究排烟热损失对燃煤工业锅炉热效率的影响程度和变化规律,通过分析近年来1205台燃煤工业锅炉测试数据,得到了当其他参数达到GB/T 15317—2009《燃煤工业锅炉节能监测》规定合格指标且排烟温度在100~200℃时,锅炉热效率-排烟热损失、排烟热损失-排烟温度、排烟热损失占锅炉热损失的比例-排烟温度和锅炉热效率-排烟温度的变化规律曲线及相对应的一元线性回归方程。结果表明:排烟热损失每增加1.0%,锅炉热效率降低1.12%;锅炉排烟温度每增加10℃,排烟热损失增加0.5%,排烟热损失占锅炉热损失的比例增加1.5%,锅炉热效率降低0.6%。 相似文献
11.
In coal mining, smoke flow from tunnel fires can easily cause a large number of deaths in the ventilation network. But the optimal smoke flow path control methods and automatic control system were lacked. In order to improve the efficiency of fire emergency rescue, the control mechanism and regional linkage control system for fire induced smoke flow in ventilation network was studied. Based on a ventilation system in coal mines, different fire scenarios for smoke flow were analysed using ventilation simulation software (VSS). Smoke flow control methods were simulated under different ventilation modes, a contrastive analysis was conducted for the respective effects and the optimal smoke flow path control methods were confirmed in different fire scenarios. A new type of ventilation facility, regional monitoring sub-stations and remote linkage control platforms were developed for smoke control. A reliability evaluation model for the control system was established by Bayesian network. The failure of the linkage control is 98.9%, the monitoring sub-station is 64.4%, the sub-station communication is 43.9%; thus, a double insurance of the control process must be realised. Since its application, the proposed regional linkage control system has been repeatedly tested through fire drills, and good results have been obtained. 相似文献
12.
This study investigated the influence of the longitudinal airflow on the smoke propagation in a tunnel by large-eddy simulation, which is now widely applied to study the turbulent flow. The smoke movement characteristics were studied in detail, with varying the longitudinal airflow in the tunnel. Six fire scenarios have been simulated with Fire Dynamics Simulator (FDS) and the results of the longitudinal distribution of CO concentration, temperature distribution, interface height, stratification, and the efficiency of smoke extraction in the tunnel have been analyzed to evaluate the different fire cases. FDS predicted a CO concentration distribution compared to calculated values using the Hu model. Furthermore, the predicted maximum smoke temperatures are compared to those given by the Kurioka model. A reasonably good agreement has been obtained for both models. The obtained results showed that the increase of the forced airflow velocity has for results a loss of stratification and significant decrease in the efficiency of extraction. 相似文献
13.
A series of numerical simulations were conducted in order to investigate the characteristics of smoke back‐layering and critical ventilation in the road tunnel at high altitude with reduced ambient atmospheric pressures. The results indicated that the smoke back‐layering length decreases with the reduction of ambient pressure. Meanwhile, the dimensionless critical longitudinal ventilation velocity decreases with one‐third power of the factor of ambient pressure at high altitude. By modifying the traditional dimensionless fire heat release rate with ambient pressure, new models were deduced to predict the smoke back‐layering length and critical ventilation velocity in the road tunnel at high altitude. 相似文献
14.
The ring fire usually originates from the combustion of the annular-distributed fuel, and it may occur in the low-temperature environments such as the Arctic area and plateau area, which is kind of different from the conventional environment. In this paper, the annular pools with various shape characteristics were designed. The outside diameter ranged from 14.9 to 30.0 cm, the inside diameter increased from 0 to 24.5 cm, and the diameter ratio was from 0 to 0.858. A series of n-heptane ring fire experiments were carried out. The results showed that for the annular pools with the same outside diameter, the mass loss rate (MLR) per unit area presents a piecewise trend with the diameter ratio. When the diameter ratio increases from 0 to 0.7, the MLR per unit area increases linearly because of the domination of air entrainment effect. When the diameter ratio is larger than 0.7, the MLR per unit area is independent of the annular shape due to the strong heat dissipation effect. Finally, a parameter named the outside circumference per unit area is put forward to characterize the annular pool. A corrected pressure modeling is established to normalize the ring fire with various shape characteristics. 相似文献
15.
The combustion characteristics of methanol‐gasoline blends pool fires were studied in a series of full‐scale tunnel experiments conducted with different methanol and gasoline blends. The parameters were measured including the mass loss rate, the pool surface temperature, the fire plume centerline temperature, the ceiling temperature, the smoke layer temperature profile, the flame height, and the smoke layer interface height. The gasoline components were analyzed by GC‐MS. The effects of azeotropism on the combustion characteristics of the different blends were discussed. On the basis of the results of the fire plume centerline temperature, the ceiling temperature, and the flame height, it shows that the tunnel fire regime gradually switches from fuel controlled to ventilation controlled with increasing gasoline fractions in the blends. The fire plume can be divided into 3 regions by the fire plume centerline temperature for the different blends. The N‐percentage rule to determine the smoke layer interface height is found to be applicable for tunnel fires with different blends for N = 26. 相似文献
16.
17.
This paper has analyzed the longitudinal ventilation on the effect of the efficiency of the smoke evolution mechanism in a metro tunnel of multi-window carriage fires. These were simulated by Large Eddy Simulation (LES) with Fire Dynamics Simulator (FDS). In the past, analyses of smoke temperature under the tunnel ceiling and smoke overflow characteristics have been conducted. However, longitudinal ventilation has a different impact on temperature than natural ventilation, especially in a subway tunnel with a multi-door carriage fire. Consequently, several simulations were run in a subway tunnel (360-m long, 6.0-m wide, and 4.8-m high). The longitudinal ventilation velocity is set by 0–10 m/s with the heat release rate of 1–10 MW. The results show that there is a linear relationship between the maximum temperature and the longitudinal ventilation velocity. An empirical model considering various longitudinal ventilation velocities was developed to predict the maximum smoke temperature underneath the subway tunnel ceiling. The effects of the longitudinal ventilation velocity, the heat release rate, and the distance of the fire source on the characteristics of longitudinal temperature distribution were analyzed. What's more, smoke overflow characteristics under different longitudinal ventilation velocities have been described. The findings and results can also provide a reference for the fire risk assessment of a metro tunnel of multi-window carriage fires. 相似文献
18.
The utility tunnels have been applied extensively to run the various pipelines in the urban areas such as the gas pipeline, electrical power cables, and the likes. Contradicting with the rapid development of the utility tunnels is the ambiguity of the fire protection code to which one critical point is whether to ventilate in the fire accident, which is hampered by the effect of wind on the combustion gain. Therefore, this paper combines the plume function with the backlayering length and critical backflow velocity to explore the plume shape, optimize the ventilation environment, and decrease its combustion gain in which shows three key features that include the concavity and convexity characteristics, instability of plume, and the balance feature. Moreover, through their derived five plume shape constraints, we acquire the optimal wind environment. Furthermore, we found that the expected length is 0.12 in optimal condition when the original critical velocity is larger than 0.43, and the other cases are 0.05 for expected length. Meanwhile, the ventilation velocity needs to be increased three to seven times. The study provides new insight into the plume flow under the wind environment and would accelerate the formalization of fire protection design for utility tunnel. 相似文献
19.
对电站空冷凝汽器矩形翅片椭圆管空气侧的流动与传热特性进行了数值模拟,分析了翅片上有无扰流孔两种情况下矩形翅片表面的局部表面传热系数分布规律。对影响空气侧传热和流动性能的因素,包括扰流孔数、扰流孔尺寸、扰流孔位置进行了优化分析。数值模拟结果表明:随着扰流孔数的增加,表面传热系数和流动阻力逐渐增加,在一定范围内,换热量也不断增加;随着扰流孔的尺寸增大,表面传热系数和流动阻力均增大,但是总换热量减少;相对来说,扰流孔的位置对表面传热系数和流动阻力的影响不大。 相似文献